Artigos de revistas sobre o tema "Predictive exposure models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Predictive exposure models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sheh Rahman, Shaesta Khan, Noraziah Adzhar e Nazri Ahmad Zamani. "Comparative Analysis of Machine Learning Models to Predict Common Vulnerabilities and Exposure". Malaysian Journal of Fundamental and Applied Sciences 20, n.º 6 (16 de dezembro de 2024): 1410–19. https://doi.org/10.11113/mjfas.v20n6.3822.
Texto completo da fonteSoo, Jhy-Charm, Perng-Jy Tsai, Shih-Chuan Lee, Shih-Yi Lu, Cheng-Ping Chang, Yuh-When Liou e Tung-Sheng Shih. "Establishing aerosol exposure predictive models based on vibration measurements". Journal of Hazardous Materials 178, n.º 1-3 (junho de 2010): 306–11. http://dx.doi.org/10.1016/j.jhazmat.2010.01.079.
Texto completo da fonteZhang, Ying, Cheng Zhao, Yu Lei, Qilin Li, Hui Jin e Qianjin Lu. "Development of a predictive model for systemic lupus erythematosus incidence risk based on environmental exposure factors". Lupus Science & Medicine 11, n.º 2 (novembro de 2024): e001311. http://dx.doi.org/10.1136/lupus-2024-001311.
Texto completo da fonteAronoff-Spencer, Eliah, Sepideh Mazrouee, Rishi Graham, Mark S. Handcock, Kevin Nguyen, Camille Nebeker, Mohsen Malekinejad e Christopher A. Longhurst. "Exposure notification system activity as a leading indicator for SARS-COV-2 caseload forecasting". PLOS ONE 18, n.º 8 (18 de agosto de 2023): e0287368. http://dx.doi.org/10.1371/journal.pone.0287368.
Texto completo da fonteHosein, Roland, Paul Corey, Frances Silverman, Anthony Ayiomamitis, R. Bruce Urch e Neil Alexis. "Predictive Models Based on Personal, Indoor and Outdoor Air Pollution Exposure". Indoor Air 1, n.º 4 (dezembro de 1991): 457–64. http://dx.doi.org/10.1111/j.1600-0668.1991.00010.x.
Texto completo da fonteWei, Chih-Chiang, e Wei-Jen Kao. "Establishing a Real-Time Prediction System for Fine Particulate Matter Concentration Using Machine-Learning Models". Atmosphere 14, n.º 12 (13 de dezembro de 2023): 1817. http://dx.doi.org/10.3390/atmos14121817.
Texto completo da fonteGomah, Mohamed Elgharib, Guichen Li, Naseer Muhammad Khan, Changlun Sun, Jiahui Xu, Ahmed A. Omar, Baha G. Mousa, Marzouk Mohamed Aly Abdelhamid e Mohamed M. Zaki. "Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques". Mathematics 10, n.º 23 (30 de novembro de 2022): 4523. http://dx.doi.org/10.3390/math10234523.
Texto completo da fonteSymanski, E., L. L. Kupper, I. Hertz-Picciotto e S. M. Rappaport. "Comprehensive evaluation of long-term trends in occupational exposure: Part 2. Predictive models for declining exposures". Occupational and Environmental Medicine 55, n.º 5 (1 de maio de 1998): 310–16. http://dx.doi.org/10.1136/oem.55.5.310.
Texto completo da fonteMoon, H., e M. Cong. "Predictive models of cytotoxicity as mediated by exposure to chemicals or drugs". SAR and QSAR in Environmental Research 27, n.º 6 (2 de junho de 2016): 455–68. http://dx.doi.org/10.1080/1062936x.2016.1208272.
Texto completo da fonteFu, Siheng. "Comparative Analysis of Expected Goals Models: Evaluating Predictive Accuracy and Feature Importance in European Soccer". Applied and Computational Engineering 117, n.º 1 (19 de dezembro de 2024): 1–10. https://doi.org/10.54254/2755-2721/2024.18300.
Texto completo da fonteSinghal, Sonalika, Nathan A. Ruprecht, Donald Sens, Mary Ann Sens e Sandeep K. Singhal. "Meta analysis of arsenic exposed genes expression profiles to develop a bladder cancer predictor." Journal of Clinical Oncology 39, n.º 15_suppl (20 de maio de 2021): e16523-e16523. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e16523.
Texto completo da fonteZhang, Yan, Weihua Yang, Günther Schauberger, Jianzhuang Wang, Jing Geng, Gen Wang e Jie Meng. "Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant". Atmosphere 12, n.º 3 (12 de março de 2021): 371. http://dx.doi.org/10.3390/atmos12030371.
Texto completo da fonteBoaz, Ray, Andrew Lawson e John Pearce. "2012 Multivariate air pollutant exposure prediction in South Carolina". Journal of Clinical and Translational Science 2, S1 (junho de 2018): 21. http://dx.doi.org/10.1017/cts.2018.98.
Texto completo da fonteKuo, Ching-Tang, Fen-Fen Chiu, Bo-Ying Bao e Ta-Yuan Chang. "Determination and Prediction of Respirable Dust and Crystalline-Free Silica in the Taiwanese Foundry Industry". International Journal of Environmental Research and Public Health 15, n.º 10 (25 de setembro de 2018): 2105. http://dx.doi.org/10.3390/ijerph15102105.
Texto completo da fonteLang, Noémie, Aurélie Ayme, Chang Ming, Jean‑Damien Combes, Victor N. Chappuis, Alex Friedlaender, Aurélie Vuilleumier et al. "Chemotherapy-related agranulocytosis as a predictive factor for germline BRCA1 pathogenic variants in breast cancer patients: a retrospective cohort study". Swiss Medical Weekly 153, n.º 3 (30 de março de 2023): 40055. http://dx.doi.org/10.57187/smw.2023.40055.
Texto completo da fonteXu, Liuchang, Jie Wang, Dayu Xu e Liang Xu. "Integrating Individual Factors to Construct Recognition Models of Consumer Fraud Victimization". International Journal of Environmental Research and Public Health 19, n.º 1 (1 de janeiro de 2022): 461. http://dx.doi.org/10.3390/ijerph19010461.
Texto completo da fonteRasool, Muhammad F., Sundus Khalid, Abdul Majeed, Hamid Saeed, Imran Imran, Mohamed Mohany, Salim S. Al-Rejaie e Faleh Alqahtani. "Development and Evaluation of Physiologically Based Pharmacokinetic Drug–Disease Models for Predicting Rifampicin Exposure in Tuberculosis and Cirrhosis Populations". Pharmaceutics 11, n.º 11 (5 de novembro de 2019): 578. http://dx.doi.org/10.3390/pharmaceutics11110578.
Texto completo da fonteSauve, Jean-Francois, Fantine Kollar e Gautier Mater. "102 Enhancing the coverage of a multi-agent exposure assessment tool through the modelling of over 100,000 measurements". Annals of Work Exposures and Health 68, Supplement_1 (1 de junho de 2024): 1. http://dx.doi.org/10.1093/annweh/wxae035.046.
Texto completo da fontePaulik, Ryan, Shaun Williams e Benjamin Popovich. "Spatial Transferability of Residential Building Damage Models between Coastal and Fluvial Flood Hazard Contexts". Journal of Marine Science and Engineering 11, n.º 10 (11 de outubro de 2023): 1960. http://dx.doi.org/10.3390/jmse11101960.
Texto completo da fonteJakasa, I., e S. Kezic. "Evaluation of in-vivo animal and in-vitro models for prediction of dermal absorption in man". Human & Experimental Toxicology 27, n.º 4 (abril de 2008): 281–88. http://dx.doi.org/10.1177/0960327107085826.
Texto completo da fonteZaitseva, N. V., M. A. Zemlyanova, Yu V. Koldibekova e E. V. Peskova. "Scientific and methodological grounds for iterative prediction of risk and harm to human health under chemical environmental exposures: From protein targets to systemic metabolic disorders". Health Risk Analysis, n.º 2 (junho de 2024): 18–31. http://dx.doi.org/10.21668/health.risk/2024.2.02.
Texto completo da fonteZaitseva, N. V., M. A. Zemlyanova, Yu V. Koldibekova e E. V. Peskova. "Scientific and methodological grounds for iterative prediction of risk and harm to human health under chemical environmental exposures: From protein targets to systemic metabolic disorders". Health Risk Analysis, n.º 2 (junho de 2024): 18–31. http://dx.doi.org/10.21668/health.risk/2024.2.02.eng.
Texto completo da fonteHong, Hyunsu, IlHwan Choi, Hyungjin Jeon, Yumi Kim, Jae-Bum Lee, Cheong Hee Park e Hyeon Soo Kim. "An Air Pollutants Prediction Method Integrating Numerical Models and Artificial Intelligence Models Targeting the Area around Busan Port in Korea". Atmosphere 13, n.º 9 (9 de setembro de 2022): 1462. http://dx.doi.org/10.3390/atmos13091462.
Texto completo da fonteNastić, Filip. "Predlog modela za predviđanje koncentracije suspendovanih (PM2.5) čestica u vazduhu". Energija, ekonomija, ekologija XXV, n.º 3 (2023): 39–44. http://dx.doi.org/10.46793/eee23-3.39n.
Texto completo da fonteZhou, Tianyi, Yaojia Shen, Jinlang Lyu, Li Yang, Hai-Jun Wang, Shenda Hong e Yuelong Ji. "Medication Usage Record-Based Predictive Modeling of Neurodevelopmental Abnormality in Infants under One Year: A Prospective Birth Cohort Study". Healthcare 12, n.º 7 (24 de março de 2024): 713. http://dx.doi.org/10.3390/healthcare12070713.
Texto completo da fonteM. Dzhambov, Angel, Donka D. Dimitrova e Tanya H. Turnovska. "Improving Traffic Noise Simulations Using Space Syntax: Preliminary Results from Two Roadway Systems". Archives of Industrial Hygiene and Toxicology 65, n.º 3 (29 de setembro de 2014): 259–72. http://dx.doi.org/10.2478/10004-1254-65-2014-2469.
Texto completo da fonteJankowska, Agnieszka, Sławomir Czerczak, Małgorzata Kucharska, Wiktor Wesołowski, Piotr Maciaszek e Małgorzata Kupczewska-Dobecka. "Application of predictive models for estimation of health care workers exposure to sevoflurane". International Journal of Occupational Safety and Ergonomics 21, n.º 4 (2 de outubro de 2015): 471–79. http://dx.doi.org/10.1080/10803548.2015.1086183.
Texto completo da fonteTrinh, Tung X., e Jongwoon Kim. "Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity". Nanomaterials 11, n.º 1 (7 de janeiro de 2021): 124. http://dx.doi.org/10.3390/nano11010124.
Texto completo da fonteTrinh, Tung X., e Jongwoon Kim. "Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity". Nanomaterials 11, n.º 1 (7 de janeiro de 2021): 124. http://dx.doi.org/10.3390/nano11010124.
Texto completo da fonteClarke, Erik, Kathleen None Chiotos, James Harrigan, Ebbing Lautenbach, Emily Reesey, Magda Wernovsky, Pam Tolomeo et al. "Comparison of Respiratory Microbiome Disruption Indices to Predict VAP and VAE risk at LTACH Admission". Infection Control & Hospital Epidemiology 41, S1 (outubro de 2020): s179—s180. http://dx.doi.org/10.1017/ice.2020.711.
Texto completo da fonteRuan, Yanmei, Guanhao Huang, Jinwei Zhang, Shiqi Mai, Chunrong Gu, Xing Rong, Lili Huang, Wenfeng Zeng e Zhi Wang. "Risk analysis of noise-induced hearing loss of workers in the automobile manufacturing industries based on back-propagation neural network model: a cross-sectional study in Han Chinese population". BMJ Open 14, n.º 5 (maio de 2024): e079955. http://dx.doi.org/10.1136/bmjopen-2023-079955.
Texto completo da fonteBloomfield, Celeste, Christine E. Staatz, Sean Unwin e Stefanie Hennig. "Assessing Predictive Performance of Published Population Pharmacokinetic Models of Intravenous Tobramycin in Pediatric Patients". Antimicrobial Agents and Chemotherapy 60, n.º 6 (21 de março de 2016): 3407–14. http://dx.doi.org/10.1128/aac.02654-15.
Texto completo da fonteWu, Wenzhu, Jing Xu, Yezhi Dou, Jia Yu, Deyang Kong e Lixiang Zhou. "Bioaccumulation of Pyraoxystrobin and Its Predictive Evaluation in Zebrafish". Toxics 10, n.º 1 (24 de dezembro de 2021): 5. http://dx.doi.org/10.3390/toxics10010005.
Texto completo da fonteLourenço, Vanessa S. C., Neusa L. Figueiredo e Michiel A. Daam. "Application of General Unified Threshold Models to Predict Time-Varying Survival of Mayfly Nymphs Exposed to Three Neonicotinoids". Water 16, n.º 8 (10 de abril de 2024): 1082. http://dx.doi.org/10.3390/w16081082.
Texto completo da fonteHo, Vikki, Coraline Danieli, Michal Abrahamowicz, Anne-Sophie Belanger, Vanessa Brunetti, Edgard Delvin, Julie Lacaille e Anita Koushik. "Predicting serum vitamin D concentrations based on self-reported lifestyle factors and personal attributes". British Journal of Nutrition 120, n.º 7 (6 de agosto de 2018): 803–12. http://dx.doi.org/10.1017/s000711451800199x.
Texto completo da fonteMari, Lorenzo, Enrico Bertuzzo, Flavio Finger, Renato Casagrandi, Marino Gatto e Andrea Rinaldo. "On the predictive ability of mechanistic models for the Haitian cholera epidemic". Journal of The Royal Society Interface 12, n.º 104 (março de 2015): 20140840. http://dx.doi.org/10.1098/rsif.2014.0840.
Texto completo da fonteVirji, Mohammed Abbas, Caroline Groth, Xiaoming Liang e Paul Henneberger. "147 Association between mixed exposures to cleaning chemicals and asthma outcomes". Annals of Work Exposures and Health 68, Supplement_1 (1 de junho de 2024): 1. http://dx.doi.org/10.1093/annweh/wxae035.219.
Texto completo da fonteDe Vito, Saverio, Elena Esposito, Ettore Massera, Fabrizio Formisano, Grazia Fattoruso, Sergio Ferlito, Antonio Del Giudice et al. "Crowdsensing IoT Architecture for Pervasive Air Quality and Exposome Monitoring: Design, Development, Calibration, and Long-Term Validation". Sensors 21, n.º 15 (31 de julho de 2021): 5219. http://dx.doi.org/10.3390/s21155219.
Texto completo da fonteBaliashvili, Davit, Francisco Averhoff, Ana Kasradze, Stephanie J. Salyer, Giorgi Kuchukhidze, Amiran Gamkrelidze, Paata Imnadze et al. "Risk factors and genotype distribution of hepatitis C virus in Georgia: A nationwide population-based survey". PLOS ONE 17, n.º 1 (21 de janeiro de 2022): e0262935. http://dx.doi.org/10.1371/journal.pone.0262935.
Texto completo da fonteNiewiadomski, A. P., H. Badura e G. Pach. "Recommendations for methane prognostics and adjustment of short-term prevention measures based on methane hazard levels in coal mine longwalls". E3S Web of Conferences 266 (2021): 08001. http://dx.doi.org/10.1051/e3sconf/202126608001.
Texto completo da fonteSmith, Lauren A., Meng Qian, Elise Ng, Yongzhao Shao, Marianne Berwick, DeAnn Lazovich e David Polsky. "Development of a melanoma risk prediction model incorporating MC1R genotype and indoor tanning exposure." Journal of Clinical Oncology 30, n.º 15_suppl (20 de maio de 2012): 8574. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.8574.
Texto completo da fonteNarimane, Kebieche, Ali Farzana Liakath, Yim Seungae, Ali Mohamed, Lambert Claude e Soulimani Rachid. "Exploring Environmental Neurotoxicity Assessment Using Human Stem Cell-Derived Models". Journal of Stem Cell Therapy and Transplantation 8, n.º 1 (2024): 054–68. http://dx.doi.org/10.29328/journal.jsctt.1001044.
Texto completo da fonteBliznyuk, Nikolay, Christopher J. Paciorek, Joel Schwartz e Brent Coull. "Nonlinear predictive latent process models for integrating spatio-temporal exposure data from multiple sources". Annals of Applied Statistics 8, n.º 3 (setembro de 2014): 1538–60. http://dx.doi.org/10.1214/14-aoas737.
Texto completo da fonteEjohwomu, Obuks Augustine, Olakekan Shamsideen Oshodi, Majeed Oladokun, Oyegoke Teslim Bukoye, Nwabueze Emekwuru, Adegboyega Sotunbo e Olumide Adenuga. "Modelling and Forecasting Temporal PM2.5 Concentration Using Ensemble Machine Learning Methods". Buildings 12, n.º 1 (4 de janeiro de 2022): 46. http://dx.doi.org/10.3390/buildings12010046.
Texto completo da fonteHoward-Azzeh, Mohammad, David L. Pearl, Terri L. O’Sullivan e Olaf Berke. "Comparing the diagnostic performance of ordinary, mixed, and lasso logistic regression models at identifying opioid and cannabinoid poisoning in U.S. dogs using pet demographic and clinical data reported to an animal poison control center (2005–2014)". PLOS ONE 18, n.º 7 (10 de julho de 2023): e0288339. http://dx.doi.org/10.1371/journal.pone.0288339.
Texto completo da fonteFagerholm, Urban, Sven Hellberg e Ola Spjuth. "Advances in Predictions of Oral Bioavailability of Candidate Drugs in Man with New Machine Learning Methodology". Molecules 26, n.º 9 (28 de abril de 2021): 2572. http://dx.doi.org/10.3390/molecules26092572.
Texto completo da fonteKantasiripitak, W., A. Outtier, D. Thomas, A. Kensert, Z. Wang, J. Sabino, S. G. Wicha, S. Vermeire, M. Ferrante e E. Dreesen. "P333 Precise and unbiased infliximab dosing in patients with inflammatory bowel diseases using a multi-model averaging approach". Journal of Crohn's and Colitis 16, Supplement_1 (1 de janeiro de 2022): i350—i351. http://dx.doi.org/10.1093/ecco-jcc/jjab232.460.
Texto completo da fonteWang, Zongming, Yuyan Wu, Shiping Xi e Xuerong Sun. "Predictive Study on Extreme Precipitation Trends in Henan and Their Impact on Population Exposure". Atmosphere 14, n.º 10 (25 de setembro de 2023): 1484. http://dx.doi.org/10.3390/atmos14101484.
Texto completo da fonteYang, Guang, HwaMin Lee e Giyeol Lee. "A Hybrid Deep Learning Model to Forecast Particulate Matter Concentration Levels in Seoul, South Korea". Atmosphere 11, n.º 4 (31 de março de 2020): 348. http://dx.doi.org/10.3390/atmos11040348.
Texto completo da fonteNji, Queenta Ngum, Olubukola Oluranti Babalola e Mulunda Mwanza. "Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity?" Toxins 14, n.º 8 (22 de agosto de 2022): 574. http://dx.doi.org/10.3390/toxins14080574.
Texto completo da fonte