Literatura científica selecionada sobre o tema "Precision health"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Precision health".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Precision health"
Olstad, Dana Lee, e Lynn McIntyre. "Reconceptualising precision public health". BMJ Open 9, n.º 9 (setembro de 2019): e030279. http://dx.doi.org/10.1136/bmjopen-2019-030279.
Texto completo da fonteGambhir, Sanjiv Sam, T. Jessie Ge, Ophir Vermesh e Ryan Spitler. "Toward achieving precision health". Science Translational Medicine 10, n.º 430 (28 de fevereiro de 2018): eaao3612. http://dx.doi.org/10.1126/scitranslmed.aao3612.
Texto completo da fonteten Have, Henk, e Bert Gordijn. "Precision in health care". Medicine, Health Care and Philosophy 21, n.º 4 (9 de outubro de 2018): 441–42. http://dx.doi.org/10.1007/s11019-018-9870-x.
Texto completo da fonteIelapi, Nicola, Michele Andreucci, Noemi Licastro, Teresa Faga, Raffaele Grande, Gianluca Buffone, Sabrina Mellace, Paolo Sapienza e Raffaele Serra. "Precision Medicine and Precision Nursing: The Era of Biomarkers and Precision Health". International Journal of General Medicine Volume 13 (dezembro de 2020): 1705–11. http://dx.doi.org/10.2147/ijgm.s285262.
Texto completo da fonteKhoury, Muin J., Michael F. Iademarco e William T. Riley. "Precision Public Health for the Era of Precision Medicine". American Journal of Preventive Medicine 50, n.º 3 (março de 2016): 398–401. http://dx.doi.org/10.1016/j.amepre.2015.08.031.
Texto completo da fonteBranca, Malorye Allison. "TOP PRECISION MEDICINE HEALTH SYSTEMS". Clinical OMICs 8, n.º 6 (1 de novembro de 2021): 32–36. http://dx.doi.org/10.1089/clinomi.08.06.21.
Texto completo da fonteDickson, Victoria Vaughan, e Gail D'Eramo Melkus. "Precision Health in Cardiovascular Conditions". Journal of Cardiovascular Nursing 37, n.º 1 (janeiro de 2022): 56–57. http://dx.doi.org/10.1097/jcn.0000000000000879.
Texto completo da fonteCHEN, Shu-Ching. "Precision Health in Cancer Care". Journal of Nursing Research 30, n.º 2 (abril de 2022): e194. http://dx.doi.org/10.1097/jnr.0000000000000486.
Texto completo da fonteKellogg, Ryan A., Jessilyn Dunn e Michael P. Snyder. "Personal Omics for Precision Health". Circulation Research 122, n.º 9 (27 de abril de 2018): 1169–71. http://dx.doi.org/10.1161/circresaha.117.310909.
Texto completo da fonteReich, Brian J., e Murali Haran. "Precision maps for public health". Nature 555, n.º 7694 (28 de fevereiro de 2018): 32–33. http://dx.doi.org/10.1038/d41586-018-02096-w.
Texto completo da fonteTeses / dissertações sobre o assunto "Precision health"
Sloan-Heggen, Christina Marie. "Precision health and deafness–optimizing genetic diagnosis". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6287.
Texto completo da fonteManrai, Arjun Kumar. "Statistical foundations for precision medicine". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97826.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references.
Physicians must often diagnose their patients using disease archetypes that are based on symptoms as opposed to underlying pathophysiology. The growing concept of "precision medicine" addresses this challenge by recognizing the vast yet fractured state of biomedical data, and calls for a patient-centered view of data in which molecular, clinical, and environmental measurements are stored in large shareable databases. Such efforts have already enabled large-scale knowledge advancement, but they also risk enabling large-scale misuse. In this thesis, I explore several statistical opportunities and challenges central to clinical decision-making and knowledge advancement with these resources. I use the inherited heart disease hypertrophic cardiomyopathy (HCM) to illustrate these concepts. HCM has proven tractable to genomic sequencing, which guides risk stratification for family members and tailors therapy for some patients. However, these benefits carry risks. I show how genomic misclassifications can disproportionately affect African Americans, amplifying healthcare disparities. These findings highlight the value of diverse population sequencing data, which can prevent variant misclassifications by identifying ancestry informative yet clinically uninformative markers. As decision-making for the individual patient follows from knowledge discovery by the community, I introduce a new quantity called the "dataset positive predictive value" (dPPV) to quantify reproducibility when many research teams separately mine a shared dataset, a growing practice that mirrors genomic testing in scale but not synchrony. I address only a few of the many challenges of delivering sound interpretation of genetic variation in the clinic and the challenges of knowledge discovery with shared "big data." These examples nonetheless serve to illustrate the need for grounded statistical approaches to reliably use these powerful new resources.
by Arjun Kumar Manrai.
Ph. D.
Eliot, Trevor G. "Provider precision labs healthcare analytics and decision support". Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111177.
Texto completo da fonteThe healthcare industry is undergoing a shift due to changes in revenue cycles and therefore delivery models. This shift is causing horizontal integration among providers and a subsequent assumption of risk that behooves them to operate similar to a payer. Analytics, while used predominately by healthcare payers in the past, will now be applicable to providers of care. This opens the door to a niche consulting firm that can provide these services effectively and affordably. Provider Precision Labs is an idea for a company that can render payer-like services on the scale of regional provider groups but at a manageable cost to the owner and operator.
GALASSO, ILARIA. "PRECISION MEDICINE IN SOCIETY: PROMISES, EXPECTATIONS AND CONCERNS AROUND SOCIAL AND HEALTH EQUITY". Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/609264.
Texto completo da fonteArnold, Matthias [Verfasser]. "Linking Precision Medicine to Public Health: An Economic Perspective on Mammography Screening / Matthias Arnold". München : Verlag Dr. Hut, 2018. http://d-nb.info/1168534283/34.
Texto completo da fonteMukwaya, Jovia Namugerwa. "An Investigation of Semantic Interoperability with EHR systems for Precision Dosing". Thesis, KTH, Medicinteknik och hälsosystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279143.
Texto completo da fontePicard, Yani. "Improving the precision and accuracy of Monte Carlo simulation in positron emission tomography". Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68241.
Texto completo da fonteFurthermore, simulations of PET systems waste considerable time generating events which will never be detected. For events in which the original photons are usually directed towards the detectors, the efficiency of the simulations was improved by giving the photons additional chances of being detected. For simulation programs which cascade the simulation process into source, collimation, and detection phases such as PETSIM, the additional detections resulted in an improvement in the simulation precision without requiring larger files of events from the source/phantom phase of the simulation. This also reduced the simulation time since fewer positron annihilations were needed to achieve a given statistical precision. This was shown to be a useful improvement over conventional Monte Carlo simulations of PET systems.
Krieger, Glenn. "Cephalometric regional superimpositions -- digital vs. analog accuracy and precision : 1. the maxilla". Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/hpd_cdm_stuetd/58.
Texto completo da fonteBuran, Bradley N. (Bradley Nicholas). "Precision and reliability of cochlear nerve response in mice lacking functional synaptic ribbons". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54454.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 87-99).
Synaptic ribbons are electron-dense structures surrounded by vesicles and anchored to the presynaptic membrane of photoreceptors, retinal bipolar cells and hair cells. Ribbon synapses are characterized by sustained exocytosis that is graded with stimulus intensity and can achieve high release rates. Leading hypotheses implicate the ribbon in maintenance of a large readily releasable pool (RRP) of presynaptic vesicles which enables rapid and precisely-timed exocytosis that supports instantaneous discharge rates of well over 1000 spikes per second. To gain insight into the function of this specialized presynaptic molecular machinery, we characterized the response properties of single auditory nerve (AN) fibers in a mouse with targeted deletion of a presynaptic scaffolding gene, bassoon, in which ribbons are no longer anchored to the active zone. Since each mammalian AN fiber usually receives input from a single inner hair cell active zone to which a single ribbon is typically anchored, single-fiber recordings from bassoon mutants and control mice offer a sensitive functional metric of the contribution of individual ribbons to neural function. Response properties of mutant AN fibers were similar, in many respects, to wild-type. Spike intervals remained irregular, thresholds were unaffected, dynamic range was unchanged, spike synchronization to
(cont.) stimulus phase was unimpaired, the time course of post-onset adaptation and recovery from adaptation were normal, and the ability to sustain discharge throughout a long-duration stimulus was unaffected. These data indicate that the presynaptic mechanisms which regulate precise timing of exocytosis, graded release rates and sustained neurotransmitter release were not impaired by loss of the ribbon. However, reductions were seen in spontaneous and sound-evoked AN fiber discharge rates, coinciding with an increased variance of first spike timing to stimulus onset. Unlike fibers from wild-type mice, mutants failed to show increased peak rate as stimulus onset became more abrupt. The reduction of peak rates and increased first spike variance likely result from degraded reliability of discharge to stimulus onset via a mechanism such as reduced RRP size. Thus, the ribbon appears to support a large RRP that enables the rapid onset rates necessary for the auditory system to resolve stimulus features key for many perceptual tasks.
by Bradley N. Buran.
Ph.D.
McCaffrey, Kevin. "Cephalometric regional superimpositions -- digital vs. analog accuracy and precision: 2. the mandible". Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/hpd_cdm_stuetd/19.
Texto completo da fonteLivros sobre o assunto "Precision health"
Shaban-Nejad, Arash, e Martin Michalowski, eds. Precision Health and Medicine. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24409-5.
Texto completo da fonteZhao, Yichuan, e Ding-Geng Chen, eds. Statistics in Precision Health. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-50690-1.
Texto completo da fontePanesar, Arjun. Precision Health and Artificial Intelligence. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9162-7.
Texto completo da fonte1949-, Burke Ed, ed. Precision heart rate training. Champaign, IL: Human Kinetics, 1998.
Encontre o texto completo da fonteFrench, Melissa G., ed. Relevance of Health Literacy to Precision Medicine. Washington, D.C.: National Academies Press, 2016. http://dx.doi.org/10.17226/23538.
Texto completo da fonteAlper, Joe, ed. Relevance of Health Literacy to Precision Medicine. Washington, D.C.: National Academies Press, 2016. http://dx.doi.org/10.17226/23592.
Texto completo da fonteMaglaveras, Nicos, Ioanna Chouvarda e Paulo de Carvalho, eds. Precision Medicine Powered by pHealth and Connected Health. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7419-6.
Texto completo da fonteBurke, Edmund R. Precision heart rate training: For maximum fitness and performance. Champaign, IL: Human Kinetics, 1998.
Encontre o texto completo da fonteAlper, Joe, Andrew Bremer e Anne Linn, eds. Leveraging Advances in Remote Geospatial Technologies to Inform Precision Environmental Health Decisions. Washington, D.C.: National Academies Press, 2021. http://dx.doi.org/10.17226/26265.
Texto completo da fonteAdebayo, Derin, e Aramide Okafor. Hydrogen sulfide: Sources, detection, and health hazards. Hauppauge, N.Y: Nova Science Publishers, 2011.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Precision health"
Yu, Feliciano B. "Precision Health". In Clinical Informatics Study Guide, 391–412. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93765-2_26.
Texto completo da fonteTobin, John. "Children’s Right to Health". In Precision Manufacturing, 1–22. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-3182-3_12-1.
Texto completo da fonteBruzelius, Emilie, e James H. Faghmous. "Precision Population Health". In Encyclopedia of Big Data, 757–60. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-32010-6_515.
Texto completo da fonteBruzelius, Emilie, e James H. Faghmous. "Precision Population Health". In Encyclopedia of Big Data, 1–4. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-32001-4_515-1.
Texto completo da fonteFlahault, Antoine. "Precision Global Health". In Handbook of Global Health, 1667–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45009-0_70.
Texto completo da fonteFlahault, Antoine. "Precision Global Health". In Handbook of Global Health, 1–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-05325-3_70-1.
Texto completo da fontePolley, Eric, e Yingdong Zhao. "Precision Trials Informatics". In Health Informatics, 215–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18626-5_15.
Texto completo da fonteLewis, Duncan, Ria Deakin e Frances-Louise McGregor. "Workplace Bullying, Disability and Chronic Ill Health". In Precision Manufacturing, 1–29. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5338-2_15-1.
Texto completo da fonteTarabella, Angela, Leonello Trivelli e Andrea Apicella. "Precision Agriculture". In SpringerBriefs in Food, Health, and Nutrition, 79–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-23811-1_6.
Texto completo da fonteAlvarez, Maria Josefina Ruiz. "Precision Public Health Perspectives". In Precision Medicine in Clinical Practice, 113–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5082-7_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Precision health"
Jumlesha, Shaik, S. Hrushikesava Raju, S. Adinarayna, U.Sesadri, Nabanita Choudhury e Vijaya Chandra Jadala. "Precision Health: Maximizing Well-being with IAHN Integration". In 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), 1623–30. IEEE, 2024. https://doi.org/10.1109/icacrs62842.2024.10841793.
Texto completo da fonteFerraro, Simona, Anilkumar Dave, Dario Cattaneo, Gianvincenzo Zuccotti, Alessia Mauri, Martina Tosi, Elvira Verduci et al. "Precision Health for Children Takes First Steps in Space". In IAF/IAA Space Life Sciences Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 98–127. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078355-0013.
Texto completo da fonteSaranya, V. S., Saikiran Mangali, K. Srinija, Galeiah Medabalimi, Meena Devi, R. Venkata Ramana N e Ajanthaa Lakkshmanan. "Image-Based Soil Health Analysis Using Deep Learning for Precision Agriculture". In 2024 9th International Conference on Communication and Electronics Systems (ICCES), 1206–14. IEEE, 2024. https://doi.org/10.1109/icces63552.2024.10860230.
Texto completo da fonteSharma, Deepak, M. Chitra Devi, Vivek Veeraiah, Manisha Kasar, Deepshikha Aggarwal e Tripti Sharma. "AI-Driven Precision Agriculture: Techniques for Monitoring Crop Health and Yield Optimization". In 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), 1794–800. IEEE, 2024. https://doi.org/10.1109/ictacs62700.2024.10840749.
Texto completo da fonteGaikwad, Shreeraj, Pratik Awatade, Yadnesh Sirdeshmukh e Chandan Prasad. "Precision Nutrition through Smart Wearable Technology Tailored Solutions for Personalized Health Enhancement". In 2024 IEEE International Conference on Contemporary Computing and Communications (InC4), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/inc460750.2024.10649111.
Texto completo da fonteKhatri, Parul, Archana Sharma e Payal. "An Optimized Machine Learning-Based Stroke Prediction: Enhancing Precision Medicine and Public Health". In 2024 International Conference on Data Science and Network Security (ICDSNS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icdsns62112.2024.10690944.
Texto completo da fonteMakhija, Aria. "Leveraging ResNet-50 for Precision Toxicity Classification in Plants: A Vision-Based Approach to Safeguard Public Health". In 2024 E-Health and Bioengineering Conference (EHB), 1–6. IEEE, 2024. https://doi.org/10.1109/ehb64556.2024.10805656.
Texto completo da fonteLi, Yan, e Yuejian Chen. "RM-YOLOv8-n: A Lightweight and High-precision Network for Rail Surface Defect Detection". In 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing), 1–6. IEEE, 2024. https://doi.org/10.1109/phm-beijing63284.2024.10874487.
Texto completo da fonteSunil, Tummapudi, Krishnagandhi Pachiappan, S. Senthilrajan, Y. Nagendar, Renato R. Maaliw e C. Pavin. "Integration of Convolutional Neural Networks for Real-Time Monitoring of Soil Health in Precision Agriculture". In 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1532–38. IEEE, 2024. https://doi.org/10.1109/iceca63461.2024.10800813.
Texto completo da fonteWang, S. X., e J. Lee. "Magneto-nanosensors for precision medicine and precision health". In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007612.
Texto completo da fonteRelatórios de organizações sobre o assunto "Precision health"
Bonnett, Michaela, Meaghan Kennedy, Odiraa Okala e Teri Garstka. Precision Public Health: Empowering Communities with Hyperlocal Data for Targeted Interventions and Improved Outcomes. Orange Sparkle Ball, maio de 2024. http://dx.doi.org/10.61152/sktq6431.
Texto completo da fonteUpadhyaya, Shrini K., Abraham Shaviv, Abraham Katzir, Itzhak Shmulevich e David S. Slaughter. Development of A Real-Time, In-Situ Nitrate Sensor. United States Department of Agriculture, março de 2002. http://dx.doi.org/10.32747/2002.7586537.bard.
Texto completo da fonteScheffler, Bettina, Alexander Bremer e Christian Kopkow. Evidence-based guideline recommendations for physiotherapy in Parkinson's disease: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, outubro de 2022. http://dx.doi.org/10.37766/inplasy2022.10.0042.
Texto completo da fonteHopmann, Christian, Christoph Zimmermann, Daniel C. Fritsche, Kirsten Bobzin, Hendrik Heinemann, Marvin Erck e Nicole Lohrey. Design of an injection mold with local placement of heating coatings for warpage compensation. Universidad de los Andes, dezembro de 2024. https://doi.org/10.51573/andes.pps39.gs.im.1.
Texto completo da fonteZhang, Yu, Chaoliang Sun, Hengxi Xu, Weiyang Shi, Luqi Cheng, Alain Dagher, Yuanchao Zhang e Tianzi Jiang. Connectivity-Based Subtyping of De Novo Parkinson Disease: Biomarkers, Medication Effects and Longitudinal Progression. Progress in Neurobiology, abril de 2024. http://dx.doi.org/10.60124/j.pneuro.2024.10.04.
Texto completo da fonteHealth hazard evaluation report: HETA-84-415-1688, Precision Castparts Corporation, Portland, Oregon. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, maio de 1986. http://dx.doi.org/10.26616/nioshheta844151688.
Texto completo da fonteHealth hazard evaluation report: HETA-86-004-1740, Industrial Precision, Inc., Westfield, Massachusetts. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, outubro de 1986. http://dx.doi.org/10.26616/nioshheta860041740.
Texto completo da fonteHealth hazard evaluation report: HETA-98-0131-2704, U.S. Precision Lens Incorporated, Cincinnati, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, agosto de 1998. http://dx.doi.org/10.26616/nioshheta9801312704.
Texto completo da fonteHealth hazard evaluation report: HETA-99-0085-2736, U.S. Precision Lens, Incorporated, Cincinnati, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, abril de 1999. http://dx.doi.org/10.26616/nioshheta9900852736.
Texto completo da fonte