Artigos de revistas sobre o tema "Pr-Dns"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pr-Dns".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Tenneti, Sudheer, Mohammad Mehrabadi e Shankar Subramaniam. "Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas–solid suspensions". Journal of Fluid Mechanics 788 (12 de janeiro de 2016): 695–729. http://dx.doi.org/10.1017/jfm.2015.693.
Texto completo da fonteKERR, ROBERT M., e JACKSON R. HERRING. "Prandtl number dependence of Nusselt number in direct numerical simulations". Journal of Fluid Mechanics 419 (25 de setembro de 2000): 325–44. http://dx.doi.org/10.1017/s0022112000001464.
Texto completo da fonteSong, Jiajun, Panxin Li, Lu Chen, Yuhang Zhao, Fengshi Tian e Benwen Li. "Scaling Law of Flow and Heat Transfer Characteristics in Turbulent Radiative Rayleigh-Bénard Convection of Optically Thick Media". Energies 17, n.º 19 (8 de outubro de 2024): 5009. http://dx.doi.org/10.3390/en17195009.
Texto completo da fonteFu, Jianhong, Sheng Chen e Xiaochen Zhou. "Effect of heterogeneity on interphase heat transfer for gas–solid flow: A particle-resolved direct numerical simulation". Physics of Fluids 34, n.º 12 (dezembro de 2022): 123317. http://dx.doi.org/10.1063/5.0130850.
Texto completo da fonteCui, Haihang, Qi Chang, Jianhua Chen e Wei Ge. "PR-DNS verification of the stability condition in the EMMS model". Chemical Engineering Journal 401 (dezembro de 2020): 125999. http://dx.doi.org/10.1016/j.cej.2020.125999.
Texto completo da fonteLuo, Heng, Fengbin Zhang, Haibo Huang, Yong Huang, Zhendong Liu, Jianxi Yan e Chicheng Yang. "The Effect of Ellipsoidal Particle Surface Roughness on Drag and Heat Transfer Coefficients Using Particle-Resolved Direct Numerical Simulation". Processes 12, n.º 11 (7 de novembro de 2024): 2473. http://dx.doi.org/10.3390/pr12112473.
Texto completo da fonteChilamkurti, Yesaswi N., e Richard D. Gould. "CFD-DEM and PR-DNS studies of low-temperature densely packed beds". International Journal of Heat and Mass Transfer 159 (outubro de 2020): 120056. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120056.
Texto completo da fonteWu, X., e P. A. Durbin. "Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes". Journal of Heat Transfer 122, n.º 2 (29 de novembro de 1999): 248–57. http://dx.doi.org/10.1115/1.521485.
Texto completo da fonteTrane, D., M. Grespan e D. Angeli. "Comparison between DNS and RANS approaches for liquid metal flows around a square rod bundle". Journal of Physics: Conference Series 2766, n.º 1 (1 de maio de 2024): 012009. http://dx.doi.org/10.1088/1742-6596/2766/1/012009.
Texto completo da fonteLakehal, D., M. Fulgosi, G. Yadigaroglu e S. Banerjee. "Direct Numerical Simulation of Turbulent Heat Transfer Across a Mobile, Sheared Gas-Liquid Interface". Journal of Heat Transfer 125, n.º 6 (19 de novembro de 2003): 1129–39. http://dx.doi.org/10.1115/1.1621891.
Texto completo da fonteAvsarkisov, V., M. Oberlack e S. Hoyas. "New scaling laws for turbulent Poiseuille flow with wall transpiration". Journal of Fluid Mechanics 746 (28 de março de 2014): 99–122. http://dx.doi.org/10.1017/jfm.2014.98.
Texto completo da fonteSHISHKINA, OLGA, e ANDRÉ THESS. "Mean temperature profiles in turbulent Rayleigh–Bénard convection of water". Journal of Fluid Mechanics 633 (25 de agosto de 2009): 449–60. http://dx.doi.org/10.1017/s0022112009990528.
Texto completo da fonteChadil, Mohamed-Amine, Stéphane Vincent e Jean-Luc Estivalèzes. "Gas-Solid Heat Transfer Computation from Particle-Resolved Direct Numerical Simulations". Fluids 7, n.º 1 (30 de dezembro de 2021): 15. http://dx.doi.org/10.3390/fluids7010015.
Texto completo da fonteMannix, P. M., e A. J. Mestel. "Weakly nonlinear mode interactions in spherical Rayleigh–Bénard convection". Journal of Fluid Mechanics 874 (9 de julho de 2019): 359–90. http://dx.doi.org/10.1017/jfm.2019.440.
Texto completo da fonteWang, Dong, Tai Jin, Kun Luo, Junhua Tan e Jianren Fan. "Analysis of the particles-induced turbulence in confined gas-solid fluidized beds by PR-DNS". International Journal of Multiphase Flow 141 (agosto de 2021): 103655. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2021.103655.
Texto completo da fonteMehrabadi, M., J. A. K. Horwitz, S. Subramaniam e A. Mani. "A direct comparison of particle-resolved and point-particle methods in decaying turbulence". Journal of Fluid Mechanics 850 (4 de julho de 2018): 336–69. http://dx.doi.org/10.1017/jfm.2018.442.
Texto completo da fonteKravets, B., D. Schulz, R. Jasevičius, S. R. Reinecke, T. Rosemann e H. Kruggel-Emden. "Comparison of particle-resolved DNS (PR-DNS) and non-resolved DEM/CFD simulations of flow through homogenous ensembles of fixed spherical and non‐spherical particles". Advanced Powder Technology 32, n.º 4 (abril de 2021): 1170–95. http://dx.doi.org/10.1016/j.apt.2021.02.016.
Texto completo da fontePanagiotou, Constantinos F., Fotos S. Stylianou, Elias Gravanis, Evangelos Akylas e Constantine Michailides. "An Explicit Algebraic Closure for Passive Scalar-Flux: Applications in Channel Flows at a Wide Range of Reynolds Numbers". Journal of Marine Science and Engineering 8, n.º 11 (13 de novembro de 2020): 916. http://dx.doi.org/10.3390/jmse8110916.
Texto completo da fonteShishkina, Olga, Susanne Horn e Sebastian Wagner. "Falkner–Skan boundary layer approximation in Rayleigh–Bénard convection". Journal of Fluid Mechanics 730 (1 de agosto de 2013): 442–63. http://dx.doi.org/10.1017/jfm.2013.347.
Texto completo da fonteGarai, Anirban, Jan Kleissl e Sutanu Sarkar. "Flow and heat transfer in convectively unstable turbulent channel flow with solid-wall heat conduction". Journal of Fluid Mechanics 757 (19 de setembro de 2014): 57–81. http://dx.doi.org/10.1017/jfm.2014.479.
Texto completo da fonteZhang, Hao, Bo Xiong, Xizhong An, Chunhai Ke e Guangchao Wei. "Prediction on drag force and heat transfer of spheroids in supercritical water: A PR-DNS study". Powder Technology 342 (janeiro de 2019): 99–107. http://dx.doi.org/10.1016/j.powtec.2018.09.051.
Texto completo da fonteZhang, Hao, Lixing Zhang, Xizhong An e Aibing Yu. "PR-DNS on the momentum and heat transfer of a rotating ellipsoidal particle in a fluid". Powder Technology 373 (agosto de 2020): 152–63. http://dx.doi.org/10.1016/j.powtec.2020.06.030.
Texto completo da fonteKolla, H., E. R. Hawkes, A. R. Kerstein, N. Swaminathan e J. H. Chen. "On velocity and reactive scalar spectra in turbulent premixed flames". Journal of Fluid Mechanics 754 (7 de agosto de 2014): 456–87. http://dx.doi.org/10.1017/jfm.2014.392.
Texto completo da fonteSTEVENS, RICHARD J. A. M., ROBERTO VERZICCO e DETLEF LOHSE. "Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection". Journal of Fluid Mechanics 643 (15 de janeiro de 2010): 495–507. http://dx.doi.org/10.1017/s0022112009992461.
Texto completo da fontePeeters, J. W. R. "Modelling turbulent heat transfer in rough channels using phenomenological theory". Journal of Physics: Conference Series 2116, n.º 1 (1 de novembro de 2021): 012025. http://dx.doi.org/10.1088/1742-6596/2116/1/012025.
Texto completo da fonteMiao, Haishan, Hao Zhang, Yuhang Wu, Yang Wang e Xizhong An. "PR-DNS investigation on momentum and heat transfer of two interactive non-spherical particles in a fluid". Powder Technology 427 (setembro de 2023): 118791. http://dx.doi.org/10.1016/j.powtec.2023.118791.
Texto completo da fonteWan, Zhen-Hua, Ping Wei, Roberto Verzicco, Detlef Lohse, Guenter Ahlers e Richard J. A. M. Stevens. "Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection". Journal of Fluid Mechanics 881 (24 de outubro de 2019): 218–43. http://dx.doi.org/10.1017/jfm.2019.770.
Texto completo da fonteSalehipour, H., W. R. Peltier e A. Mashayek. "Turbulent diapycnal mixing in stratified shear flows: the influence of Prandtl number on mixing efficiency and transition at high Reynolds number". Journal of Fluid Mechanics 773 (20 de maio de 2015): 178–223. http://dx.doi.org/10.1017/jfm.2015.225.
Texto completo da fonteLluesma-Rodríguez, F., S. Hoyas e M. J. Perez-Quiles. "Influence of the computational domain on DNS of turbulent heat transfer up to Reτ=2000 for Pr=0.71". International Journal of Heat and Mass Transfer 122 (julho de 2018): 983–92. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.047.
Texto completo da fontePlumley, Meredith, Keith Julien, Philippe Marti e Stephan Stellmach. "The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection". Journal of Fluid Mechanics 803 (16 de agosto de 2016): 51–71. http://dx.doi.org/10.1017/jfm.2016.452.
Texto completo da fonteSalehipour, Hesam, e W. R. Peltier. "Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence". Journal of Fluid Mechanics 775 (26 de junho de 2015): 464–500. http://dx.doi.org/10.1017/jfm.2015.305.
Texto completo da fonteZhang, Xuan, e Oleg Zikanov. "Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field". Journal of Fluid Mechanics 757 (19 de setembro de 2014): 33–56. http://dx.doi.org/10.1017/jfm.2014.473.
Texto completo da fontevan der Poel, Erwin P., Roberto Verzicco, Siegfried Grossmann e Detlef Lohse. "Plume emission statistics in turbulent Rayleigh–Bénard convection". Journal of Fluid Mechanics 772 (28 de abril de 2015): 5–15. http://dx.doi.org/10.1017/jfm.2015.176.
Texto completo da fonteLuhar, M., A. S. Sharma e B. J. McKeon. "On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis". Journal of Fluid Mechanics 751 (16 de junho de 2014): 38–70. http://dx.doi.org/10.1017/jfm.2014.283.
Texto completo da fonteBaharanchi, Ahmadreza Abbasi, Seckin Gokaltun e George Dulikravich. "Performance improvement of existing drag models in two-fluid modeling of gas–solid flows using a PR-DNS based drag model". Powder Technology 286 (dezembro de 2015): 257–68. http://dx.doi.org/10.1016/j.powtec.2015.07.001.
Texto completo da fonteWagner, Sebastian, e Olga Shishkina. "Heat flux enhancement by regular surface roughness in turbulent thermal convection". Journal of Fluid Mechanics 763 (11 de dezembro de 2014): 109–35. http://dx.doi.org/10.1017/jfm.2014.665.
Texto completo da fonteRosevear, Madelaine G., Bishakhdatta Gayen e Ross W. Griffiths. "Turbulent horizontal convection under spatially periodic forcing: a regime governed by interior inertia". Journal of Fluid Mechanics 831 (13 de outubro de 2017): 491–523. http://dx.doi.org/10.1017/jfm.2017.640.
Texto completo da fonteFu, Hao, Juan Chen, Yanjun Tong, Sifan Peng, Fang Liu, Xuefeng Lyu e Houjian Zhao. "New Nusselt Number Correlation and Turbulent Prandtl Number Model for Turbulent Convection with Liquid Metal Based on Quasi-DNS Results". Energies 18, n.º 3 (24 de janeiro de 2025): 547. https://doi.org/10.3390/en18030547.
Texto completo da fonteDeusebio, Enrico, G. Brethouwer, P. Schlatter e E. Lindborg. "A numerical study of the unstratified and stratified Ekman layer". Journal of Fluid Mechanics 755 (26 de agosto de 2014): 672–704. http://dx.doi.org/10.1017/jfm.2014.318.
Texto completo da fonteSun, Bo, Sudheer Tenneti, Shankar Subramaniam e Donald L. Koch. "Pseudo-turbulent heat flux and average gas–phase conduction during gas–solid heat transfer: flow past random fixed particle assemblies". Journal of Fluid Mechanics 798 (1 de junho de 2016): 299–349. http://dx.doi.org/10.1017/jfm.2016.290.
Texto completo da fonteGayen, Bishakhdatta, Ross W. Griffiths e Graham O. Hughes. "Stability transitions and turbulence in horizontal convection". Journal of Fluid Mechanics 751 (25 de junho de 2014): 698–724. http://dx.doi.org/10.1017/jfm.2014.302.
Texto completo da fonteBiferale, L., A. S. Lanotte, R. Scatamacchia e F. Toschi. "Intermittency in the relative separations of tracers and of heavy particles in turbulent flows". Journal of Fluid Mechanics 757 (23 de setembro de 2014): 550–72. http://dx.doi.org/10.1017/jfm.2014.515.
Texto completo da fonteTRIAS, F. X., M. SORIA, A. OLIVA e C. D. PÉREZ-SEGARRA. "Direct numerical simulations of two- and three-dimensional turbulent natural convection flows in a differentially heated cavity of aspect ratio 4". Journal of Fluid Mechanics 586 (14 de agosto de 2007): 259–93. http://dx.doi.org/10.1017/s0022112007006908.
Texto completo da fonteIbe, Akihiro, Kazuo Saito, Mitsuo Nakazato, Yoko Kikuchi, Kenji Fujinuma e Taichiro Nishima. "Quantitative Determination of Amines in Wine by Liquid Chromatography". Journal of AOAC INTERNATIONAL 74, n.º 4 (1 de julho de 1991): 695–98. http://dx.doi.org/10.1093/jaoac/74.4.695.
Texto completo da fonteVaraksin, Aleksey Yu, e Sergei V. Ryzhkov. "Mathematical Modeling of Gas-Solid Two-Phase Flows: Problems, Achievements and Perspectives (A Review)". Mathematics 11, n.º 15 (26 de julho de 2023): 3290. http://dx.doi.org/10.3390/math11153290.
Texto completo da fonteHorn, Susanne, e Olga Shishkina. "Toroidal and poloidal energy in rotating Rayleigh–Bénard convection". Journal of Fluid Mechanics 762 (2 de dezembro de 2014): 232–55. http://dx.doi.org/10.1017/jfm.2014.652.
Texto completo da fontePagliarini, L., R. Corsini, E. Stalio e F. Bozzoli. "RANS representation of transition and separation over a low-Re number blade section at high angle of attack". Journal of Physics: Conference Series 2766, n.º 1 (1 de maio de 2024): 012086. http://dx.doi.org/10.1088/1742-6596/2766/1/012086.
Texto completo da fonteMasi, Enrica, Josette Bellan, Kenneth G. Harstad e Nora A. Okong’o. "Multi-species turbulent mixing under supercritical-pressure conditions: modelling, direct numerical simulation and analysis revealing species spinodal decomposition". Journal of Fluid Mechanics 721 (19 de março de 2013): 578–626. http://dx.doi.org/10.1017/jfm.2013.70.
Texto completo da fonteAhlers, Guenter, Eberhard Bodenschatz e Xiaozhou He. "Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8". Journal of Fluid Mechanics 758 (9 de outubro de 2014): 436–67. http://dx.doi.org/10.1017/jfm.2014.543.
Texto completo da fonteIntana, Warin, Prisana Wonglom, Nakarin Suwannarach e Anurag Sunpapao. "Trichoderma asperelloides PSU-P1 Induced Expression of Pathogenesis-Related Protein Genes against Gummy Stem Blight of Muskmelon (Cucumis melo) in Field Evaluation". Journal of Fungi 8, n.º 2 (4 de fevereiro de 2022): 156. http://dx.doi.org/10.3390/jof8020156.
Texto completo da fonte