Literatura científica selecionada sobre o tema "Pr-Dns"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Pr-Dns".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Pr-Dns"
Tenneti, Sudheer, Mohammad Mehrabadi e Shankar Subramaniam. "Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas–solid suspensions". Journal of Fluid Mechanics 788 (12 de janeiro de 2016): 695–729. http://dx.doi.org/10.1017/jfm.2015.693.
Texto completo da fonteKERR, ROBERT M., e JACKSON R. HERRING. "Prandtl number dependence of Nusselt number in direct numerical simulations". Journal of Fluid Mechanics 419 (25 de setembro de 2000): 325–44. http://dx.doi.org/10.1017/s0022112000001464.
Texto completo da fonteSong, Jiajun, Panxin Li, Lu Chen, Yuhang Zhao, Fengshi Tian e Benwen Li. "Scaling Law of Flow and Heat Transfer Characteristics in Turbulent Radiative Rayleigh-Bénard Convection of Optically Thick Media". Energies 17, n.º 19 (8 de outubro de 2024): 5009. http://dx.doi.org/10.3390/en17195009.
Texto completo da fonteFu, Jianhong, Sheng Chen e Xiaochen Zhou. "Effect of heterogeneity on interphase heat transfer for gas–solid flow: A particle-resolved direct numerical simulation". Physics of Fluids 34, n.º 12 (dezembro de 2022): 123317. http://dx.doi.org/10.1063/5.0130850.
Texto completo da fonteCui, Haihang, Qi Chang, Jianhua Chen e Wei Ge. "PR-DNS verification of the stability condition in the EMMS model". Chemical Engineering Journal 401 (dezembro de 2020): 125999. http://dx.doi.org/10.1016/j.cej.2020.125999.
Texto completo da fonteLuo, Heng, Fengbin Zhang, Haibo Huang, Yong Huang, Zhendong Liu, Jianxi Yan e Chicheng Yang. "The Effect of Ellipsoidal Particle Surface Roughness on Drag and Heat Transfer Coefficients Using Particle-Resolved Direct Numerical Simulation". Processes 12, n.º 11 (7 de novembro de 2024): 2473. http://dx.doi.org/10.3390/pr12112473.
Texto completo da fonteChilamkurti, Yesaswi N., e Richard D. Gould. "CFD-DEM and PR-DNS studies of low-temperature densely packed beds". International Journal of Heat and Mass Transfer 159 (outubro de 2020): 120056. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120056.
Texto completo da fonteWu, X., e P. A. Durbin. "Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes". Journal of Heat Transfer 122, n.º 2 (29 de novembro de 1999): 248–57. http://dx.doi.org/10.1115/1.521485.
Texto completo da fonteTrane, D., M. Grespan e D. Angeli. "Comparison between DNS and RANS approaches for liquid metal flows around a square rod bundle". Journal of Physics: Conference Series 2766, n.º 1 (1 de maio de 2024): 012009. http://dx.doi.org/10.1088/1742-6596/2766/1/012009.
Texto completo da fonteLakehal, D., M. Fulgosi, G. Yadigaroglu e S. Banerjee. "Direct Numerical Simulation of Turbulent Heat Transfer Across a Mobile, Sheared Gas-Liquid Interface". Journal of Heat Transfer 125, n.º 6 (19 de novembro de 2003): 1129–39. http://dx.doi.org/10.1115/1.1621891.
Texto completo da fonteTeses / dissertações sobre o assunto "Pr-Dns"
Butaye, Edouard. "Modélisation et simulations résolues d'écoulement fluide-particules : du régime de Stokes aux lits fluidisés anisothermes". Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0029.
Texto completo da fonteSolar tower power plants harness concentrated solar flux to heat a fluid and generate electricity through a thermodynamic cycle that generates steam and drives a turbo-alternator. To increase thermal/electrical conversion efficiency, it is a required to raise the receiver outlet temperature to at least 800°C. An alternative to conventional fluids is to use air-fluidized particles to raise the working temperature and maximize parietal heat transfer. The solid particles used can withstand temperatures in excess of 1000°C without degrading their physical properties, and store heat efficiently. To meet these challenges, it is necessary to characterize the flow within the receiving tube, as well as the physical mechanisms of heat transfer in these configurations. This work focuses on the local description of anisothermal fluid-particle flows using particle-resolved direct numerical simulations (PR-DNS) with high-performance computing. Improvements are first implemented in the code to compute quantities of interest and optimize the numerical method. Next, several liquid-solid fluidized bed configurations are studied to extensively characterize flow dynamics. Parietal heat transfers are also computed as well as fluid-particle heat transfers. Gas-solid configurations are studied to validate the numerical simulation tool for modeling these flows. Finally, a new scale of resolution is proposed, referred to as Particle Resolved - Subgrid Corrected Simulation (PR-SCS). This scale enables hydrodynamic forces to be accurately modeled despite the coarse resolution
Trabalhos de conferências sobre o assunto "Pr-Dns"
Bergant, R., e I. Tiselj. "The Smallest Temperature Scales in a Turbulent Channel Flow at High Prandtl Numbers". In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72495.
Texto completo da fonteBergant, Robert, Iztok Tiselj e Gad Hetsroni. "Near-Wall Turbulent Heat Transfer at Prandtl Numbers 1 to 54". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32006.
Texto completo da fonteTiselj, Iztok, e Luka Sˇtrubelj. "Passive Scalar Turbulent Channel Flow at Pr=25: DNS-LES Approach". In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37325.
Texto completo da fonteLai, Jonathan K., Elia Merzari, Yassin A. Hassan e Aleksandr Obabko. "Validation and Development of DNS Database for Low Prandtl Numbers in Rod Bundle". In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5036.
Texto completo da fonteBergant, Robert, Iztok Tiselj e Gad Hetsroni. "Resolution Requirements for DNS of Turbulent Heat Transfer Near the Heated Wall at Prandtl Number 5.4". In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24129.
Texto completo da fonteBergant, R., e I. Tiselj. "Numerical Simulations of Turbulent Flume Heat Transfer at Pr = 5.4: Impact of the Smallest Temperature Scales". In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77144.
Texto completo da fonteJahani, B., M. MacDonald e Stuart E. Norris. "Modelling turbulent stratified open channel flow for Pr=7 using multiscale DNS". In 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ichmt.thmt-23.1260.
Texto completo da fonteJahani, B., M. MacDonald e Stuart E. Norris. "Modelling turbulent stratified open channel flow for Pr=7 using multiscale DNS". In 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/thmt-23.1260.
Texto completo da fonteOtic´, I., e G. Gro¨tzbach. "Direct Numerical Simulation and RANS Modeling of Turbulent Natural Convection for Low Prandtl Number Fluids". In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3132.
Texto completo da fonteBhushan, S., M. Elmellouki, W. D. Jock, D. K. Walters, J. K. Lai, Y. A. Hassan, A. Obabko e E. Merzari. "Numerical Investigation of Flow and Heat Transfer Characteristics for Attached and Separated Low-Pr Flows". In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5273.
Texto completo da fonte