Livros sobre o tema "Potentiel machine learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 30 melhores livros para estudos sobre o assunto "Potentiel machine learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.
Bennaceur, Amel, Reiner Hähnle e Karl Meinke, eds. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Texto completo da fontePolyakova, Anna, Tat'yana Sergeeva e Irina Kitaeva. The continuous formation of the stochastic culture of schoolchildren in the context of the digital transformation of general education. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1876368.
Texto completo da fonteTaha, Zahari, Rabiu Muazu Musa, Mohamad Razali Abdullah e Anwar P.P.Abdul Majeed. Machine Learning in Sports: Identifying Potential Archers. Springer, 2018.
Encontre o texto completo da fontePumperla, Max, Alex Tellez e Michal Malohlava. Mastering Machine Learning with Spark 2.x: Harness the potential of machine learning, through spark. Packt Publishing - ebooks Account, 2017.
Encontre o texto completo da fonteQuantum Machine Learning: Unleashing Potential in Science and Industry. Primedia eLaunch LLC, 2023.
Encontre o texto completo da fonteMachine Learning for Dynamic Software Analysis : Potentials and Limits: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, ... Papers. Springer, 2018.
Encontre o texto completo da fonteNagel, Stefan. Machine Learning in Asset Pricing. Princeton University Press, 2021. http://dx.doi.org/10.23943/princeton/9780691218700.001.0001.
Texto completo da fonteAI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Encontre o texto completo da fonteJaswal, Gaurav, Vivek Kanhangad e Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Encontre o texto completo da fonteJaswal, Gaurav, Vivek Kanhangad e Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Encontre o texto completo da fonteU.S. Air Force Enlisted Classification and Reclassification: Potential Improvements Using Machine Learning and Optimization Models. RAND Corporation, 2022. http://dx.doi.org/10.7249/rr-a284-1.
Texto completo da fonteSoulava, Blanka, Victoria Ying e Hamish Cameron. Data Rules for Machine Learning: How Europe Can Unlock the Potential While Mitigating the Risks. Atlantic Council, 2021.
Encontre o texto completo da fonteRobson, Sean, Maria C. Lytell, Kimberly Curry Hall, Matthew Walsh e Kirsten M. Keller. U. S. Air Force Enlisted Classification and Reclassification: Potential Improvements Using Machine Learning and Optimization Models. RAND Corporation, The, 2022.
Encontre o texto completo da fonteVallor, Shannon, e George A. Bekey. Artificial Intelligence and the Ethics of Self-Learning Robots. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190652951.003.0022.
Texto completo da fonteSangeetha, V., e S. Kevin Andrews. Introduction to Artificial Intelligence and Neural Networks. Magestic Technology Solutions (P) Ltd, Chennai, Tamil Nadu, India, 2023. http://dx.doi.org/10.47716/mts/978-93-92090-24-0.
Texto completo da fonteMuggleton, Stephen, e Nicholas Chater, eds. Human-Like Machine Intelligence. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198862536.001.0001.
Texto completo da fonteBarker, Richard. Achieving future impact. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198737780.003.0007.
Texto completo da fonteVillez, Kris, Daniel Aguado, Janelcy Alferes, Queralt Plana, Maria Victoria Ruano e Oscar Samuelsson, eds. Metadata Collection and Organization in Wastewater Treatment and Wastewater Resource Recovery Systems. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789061154.
Texto completo da fonteBi, Xiaojun, Andrew Howes, Per Ola Kristensson, Antti Oulasvirta e John Williamson. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.003.0001.
Texto completo da fonteMungoli, Neelesh. Breaking Barriers with AI : Empowering Latin America Through Machine Learning: Unleashing the Potential of Artificial Intelligence to Transform Latin America's Economy, Society, and Future. Absolute Author Publishing House, 2023.
Encontre o texto completo da fonteZhai, Xiaoming, e Joseph Krajcik, eds. Uses of Artificial Intelligence in STEM Education. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198882077.001.0001.
Texto completo da fonteBruno, Michael A. Error and Uncertainty in Diagnostic Radiology. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190665395.001.0001.
Texto completo da fonteRolls, Edmund T. Brain Computations. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198871101.001.0001.
Texto completo da fontePlecháč, Petr. Versification and Authorship Attribution. Karolinum Press, 2021. http://dx.doi.org/10.14712/9788024648903.
Texto completo da fonteDimick, William. Python : 3 Books in 1: Beginner's Guide, Data Science and Machine Learning. the Easiest Guide to Get Started in Python Programming. Unlock Your Programmer Potential and Develop Your Project in Just 30 Days. Phormictopus Publishing, 2020.
Encontre o texto completo da fonteDimick, William. Python : 3 Books in 1: Beginner's Guide, Data Science and Machine Learning. the Easiest Guide to Get Started in Python Programming. Unlock Your Programmer Potential and Develop Your Project in Just 30 Days. Phormictopus Publishing, 2020.
Encontre o texto completo da fonteOulasvirta, Antti, Per Ola Kristensson, Xiaojun Bi e Andrew Howes, eds. Computational Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.001.0001.
Texto completo da fonteDean, Roger T., e Alex McLean, eds. The Oxford Handbook of Algorithmic Music. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190226992.001.0001.
Texto completo da fonteBriggs, Andrew, e Michael J. Reiss. Human Flourishing. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198850267.001.0001.
Texto completo da fonteVolpi, Elena, Jong Suk Kim, Shaleen Jain e Sangam Shrestha, eds. Artificial Intelligence in Hydrology. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789064865.
Texto completo da fonte