Literatura científica selecionada sobre o tema "Possibilistic similarity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Possibilistic similarity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Possibilistic similarity"
SGARRO, ANDREA. "UTILITIES AND DISTORTIONS: AN OBJECTIVE APPROACH TO POSSIBILITIES CODING". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 13, n.º 02 (abril de 2005): 139–61. http://dx.doi.org/10.1142/s0218488505003369.
Texto completo da fonteSingh, Abhishek, e Anil Kumar. "Introduction of Local Spatial Constraints and Local Similarity Estimation in Possibilistic c-Means Algorithm for Remotely Sensed Imagery". Journal of Modeling and Optimization 11, n.º 1 (15 de junho de 2019): 51–56. http://dx.doi.org/10.32732/jmo.2019.11.1.51.
Texto completo da fonteMiyamoto, Sadaaki, Youhei Kuroda e Kenta Arai. "Algorithms for Sequential Extraction of Clusters by Possibilistic Method and Comparison with Mountain Clustering". Journal of Advanced Computational Intelligence and Intelligent Informatics 12, n.º 5 (20 de setembro de 2008): 448–53. http://dx.doi.org/10.20965/jaciii.2008.p0448.
Texto completo da fonteJuarez, Jose M., Francisco Guil, Jose Palma e Roque Marin. "Temporal similarity by measuring possibilistic uncertainty in CBR". Fuzzy Sets and Systems 160, n.º 2 (janeiro de 2009): 214–30. http://dx.doi.org/10.1016/j.fss.2008.05.017.
Texto completo da fonteYu yu Liao, Ke xin Jia e Zi shu He. "Similarity Measure based Robust Possibilistic C-means Clustering Algorithms". Journal of Convergence Information Technology 6, n.º 12 (31 de dezembro de 2011): 129–38. http://dx.doi.org/10.4156/jcit.vol6.issue12.17.
Texto completo da fonteCharfi, Amal, Sonda Ammar Bouhamed, Eloi Bosse, Imene Khanfir Kallel, Wassim Bouchaala, Basel Solaiman e Nabil Derbel. "Possibilistic Similarity Measures for Data Science and Machine Learning Applications". IEEE Access 8 (2020): 49198–211. http://dx.doi.org/10.1109/access.2020.2979553.
Texto completo da fonteBai, Xiangzhi, Yuxuan Zhang, Haonan Liu e Zhiguo Chen. "Similarity Measure-Based Possibilistic FCM With Label Information for Brain MRI Segmentation". IEEE Transactions on Cybernetics 49, n.º 7 (julho de 2019): 2618–30. http://dx.doi.org/10.1109/tcyb.2018.2830977.
Texto completo da fonteAlsahwa, B., B. Solaiman, É. Bossé, S. Almouahed e D. Guériot. "A Method of Spatial Unmixing Based on Possibilistic Similarity in Soft Pattern Classification". Fuzzy Information and Engineering 8, n.º 3 (setembro de 2016): 295–314. http://dx.doi.org/10.1016/j.fiae.2016.11.004.
Texto completo da fonteDevi, R. "Unsupervised Kernel-Induced Fuzzy Possibilistic C-Means Technique in Investigating Real-World Data". Journal of Physics: Conference Series 2199, n.º 1 (1 de fevereiro de 2022): 012033. http://dx.doi.org/10.1088/1742-6596/2199/1/012033.
Texto completo da fonteSchockaert, Steven, e Henri Prade. "An Inconsistency-Tolerant Approach to Information Merging Based on Proposition Relaxation". Proceedings of the AAAI Conference on Artificial Intelligence 24, n.º 1 (3 de julho de 2010): 363–68. http://dx.doi.org/10.1609/aaai.v24i1.7583.
Texto completo da fonteTeses / dissertações sobre o assunto "Possibilistic similarity"
Jenhani, Ilyes. "From possibilistic similarity measures to possibilistic decision trees". Thesis, Artois, 2010. http://www.theses.fr/2010ARTO0402/document.
Texto completo da fonteThis thesis concerns two important issues in machine learning and reasoning under uncertainty: how to evaluate a similarity relation between two uncertain pieces of information, and how to perform classification from uncertain data. Our first main contribution is to propose a so-called possibilistic decision tree which allows to induce decision trees from training data afflicted with imperfection. More precisely, it handles training data characterized by uncertain class labels where uncertainty is modeled within the quantitative possibility theory framework. We have developed three possibilistic decision tree approaches. For each approach, we were faced and solved typical questions for inducing possibilistic decision trees such as how to define an attribute selection measure when classes are represented by possibility distributions, how to find the stopping criteria and how leaves should be labeled in such uncertain context. The first approach, so-called, non-specificity-based possibilistic decision tree uses the concept of non-specificity relative to possibility theory in its attribute selection measure component. This approach keeps up the possibility distributions within all the stages of the building procedure and especially when evaluating the informativeness of the attributes in the attribute selection step. Conversely, the second and the third approaches, so-called similarity-based possibilistic decision tree and clustering-based possibilistic decision tree, automatically, get rid of possibility distributions in their attribute selection measure. This strategy has allowed them to extend the gain ratio criterion and hence to extend the C4.5 algorithm to handle possibilistic labeled data. These two possibilistic decision tree approaches are mainly based on the concept of similarity between possibility distributions.This latter issue constitutes our second main contribution in this thesis. In fact, an important challenge was to provide a property-based analysis of possibilistic similarity measures. After showing the important role that inconsistency could play in assessing possibilistic similarity, a new inconsistency-based possibilistic similarity measure, so-called information affinity has been proposed. This measure satisfies a set of natural properties that we have established. Finally, we have conducted experiments to show the feasibility and to compare the different possibilistic decision tree approaches developed in this thesis
Ben, marzouka Wided. "Modélisation conjointe des connaissances humaines et machines pour de meilleurs approches d’aide à la décision". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0452.
Texto completo da fonteThis research introduces a novel approach to modeling human and machine knowledge in the fault identification (FI). It makes three key contributions:(1) the structuring of the Hypothetical Case Base (H-CB), which captures the sequential reasoning of experts and organizes observations to enhance FI; (2) knowledge extraction, incorporating possibilistic reasoning to manage the heterogeneity of observed primitives, introduce a Possibilistic Knowledge Vector (PSK), and improve diagnostic accuracy through possibilistic similarity; and (3) an incremental learning mechanism that enables the continuous integration of new knowledge, allowing the system to evolve with newly encountered cases and refine decision-making. The proposed approach, Possibilistic Hypothetical Case-Based Reasoning (PH-CBR), has been experimentally validated. Results show significant improvements over traditional case-based reasoning methods, reducing the number of primitives required for FI and enhancing industrial machine efficiency by minimizing diagnostic time
Capítulos de livros sobre o assunto "Possibilistic similarity"
Solaiman, Basel, e Éloi Bossé. "Possibilistic Similarity Measures". In Possibility Theory for the Design of Information Fusion Systems, 83–135. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32853-5_4.
Texto completo da fonteJenhani, Ilyes, Salem Benferhat e Zied Elouedi. "Possibilistic Similarity Measures". In Foundations of Reasoning under Uncertainty, 99–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10728-3_6.
Texto completo da fonteDahabiah, Anas, John Puentes e Basel Solaiman. "Possibilistic Similarity Estimation and Visualization". In Lecture Notes in Computer Science, 273–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04417-5_26.
Texto completo da fonteTanaka, Hideo, e Peijun Guo. "Possibilistic Data Analysis and Its Similarity to Rough Sets". In Data Mining, Rough Sets and Granular Computing, 518–36. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1791-1_26.
Texto completo da fonteJenhani, Ilyes, Nahla Ben Amor, Zied Elouedi, Salem Benferhat e Khaled Mellouli. "Information Affinity: A New Similarity Measure for Possibilistic Uncertain Information". In Lecture Notes in Computer Science, 840–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75256-1_73.
Texto completo da fonteJia, Kexin, Miao He e Ting Cheng. "A New Similarity Measure Based Robust Possibilistic C-Means Clustering Algorithm". In Web Information Systems and Mining, 335–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23982-3_41.
Texto completo da fonteSlokom, Manel, e Raouia Ayachi. "A Hybrid User and Item Based Collaborative Filtering Approach by Possibilistic Similarity Fusion". In Advances in Combining Intelligent Methods, 125–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46200-4_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Possibilistic similarity"
"Possibilistic Similarity based Image Classification". In International Conference on Pattern Recognition Applications and Methods. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004265002710275.
Texto completo da fonteZhang, Chunhui, Yiming Zhou e Trevor Martin. "Similarity Based Fuzzy and Possibilistic c-means Algorithm". In 11th Joint Conference on Information Sciences. Paris, France: Atlantis Press, 2008. http://dx.doi.org/10.2991/jcis.2008.9.
Texto completo da fonteSkrjanc, Igor, Araceli Sanchis de Miguel, Jose Antonio Iglesias, Agapito Ledezma e Dejan Dovzan. "Evolving Cauchy possibilistic clustering based on cosine similarity for monitoring cyber systems". In 2017 Evolving and Adaptive Intelligent Systems (EAIS). IEEE, 2017. http://dx.doi.org/10.1109/eais.2017.7954825.
Texto completo da fonte"A Method of Pixel Unmixing by Classes based on the Possibilistic Similarity". In International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004826202200226.
Texto completo da fonte