Artigos de revistas sobre o tema "Porous foam"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Porous foam".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Starov, Victor, Anna Trybala, Phillip Johnson e Mauro Vaccaro. "Foam Quality of Foams Formed on Capillaries and Porous Media Systems". Colloids and Interfaces 5, n.º 1 (8 de fevereiro de 2021): 10. http://dx.doi.org/10.3390/colloids5010010.
Texto completo da fonteJohnson, Phillip, Mauro Vaccaro, Victor Starov e Anna Trybala. "Foam Formation and Interaction with Porous Media". Coatings 10, n.º 2 (5 de fevereiro de 2020): 143. http://dx.doi.org/10.3390/coatings10020143.
Texto completo da fonteAgbedor, Solomon-Oshioke, Donghui Yang, Jianqing Chen, Lei Wang e Hong Wu. "Low-Temperature Reactive Sintered Porous Mg-Al-Zn Alloy Foams". Metals 12, n.º 4 (18 de abril de 2022): 692. http://dx.doi.org/10.3390/met12040692.
Texto completo da fonteYamada, Yasuo, Takumi Banno, Yun Cang Li e Cui E. Wen. "Anisotropic Mechanical Properties of Nickel Foams Fabricated by Powder Metallurgy". Materials Science Forum 569 (janeiro de 2008): 277–80. http://dx.doi.org/10.4028/www.scientific.net/msf.569.277.
Texto completo da fonteShih, Albert J., e Zhenhua Huang. "Three-Dimensional Optical Measurements of Porous Foams". Journal of Manufacturing Science and Engineering 128, n.º 4 (26 de fevereiro de 2006): 951–59. http://dx.doi.org/10.1115/1.2194556.
Texto completo da fonteDouarche, Frederic, Benjamin Braconnier e Bernard Bourbiaux. "Foam placement for soil remediation: scaling foam flow models in heterogeneous porous media for a better improvement of sweep efficiency". Science and Technology for Energy Transition 78 (2023): 42. http://dx.doi.org/10.2516/stet/2023036.
Texto completo da fonteWong, Pei-Chun, Sin-Mao Song, Pei-Hua Tsai, Muhammad Jauharul Maqnun, Wei-Ru Wang, Jia-Lin Wu e Shian-Ching (Jason) Jang. "Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications". Materials 15, n.º 5 (3 de março de 2022): 1887. http://dx.doi.org/10.3390/ma15051887.
Texto completo da fonteThanh, Tram Nguyen Xuan, Michito Maruta, Kanji Tsuru, Alireza Valanezhad, Shigeki Matsuya e Ishikawa Kunio. "Fabrication of Calcite Foam by Inverse Ceramic Foam Method". Key Engineering Materials 529-530 (novembro de 2012): 153–56. http://dx.doi.org/10.4028/www.scientific.net/kem.529-530.153.
Texto completo da fonteWong, Wai Yee, Ahmad Fauzi Mohd Noor e Radzali Othman. "Sintering of Beta-Tricalcium Phosphate Scaffold Using Polyurethane Template". Key Engineering Materials 694 (maio de 2016): 94–98. http://dx.doi.org/10.4028/www.scientific.net/kem.694.94.
Texto completo da fonteXiong, Jian Yu, Yun Cang Li, Yasuo Yamada, Peter D. Hodgson e Cui E. Wen. "Processing and Mechanical Properties of Porous Titanium-Niobium Shape Memory Alloy for Biomedical Applications". Materials Science Forum 561-565 (outubro de 2007): 1689–92. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1689.
Texto completo da fonteZhang, Xiaoyang, Liqun Tang, Zhenyu Jiang, Zejia Liu, Yiping Liu e Daining Fang. "Effects of Meso Shape Irregularity of Metal Foam on Yield Features under Triaxial Loading". International Journal of Structural Stability and Dynamics 15, n.º 07 (31 de agosto de 2015): 1540014. http://dx.doi.org/10.1142/s0219455415400143.
Texto completo da fonteLagzdiņš, Aivars, Alberts Zilaucs, Ilze Beverte e Jānis Andersons. "Modeling the Nonlinear Deformation of Highly Porous Cellular Plastics Filled with Clay Nanoplatelets". Materials 15, n.º 3 (28 de janeiro de 2022): 1033. http://dx.doi.org/10.3390/ma15031033.
Texto completo da fonteNikaido, Taro, Kanji Tsuru, Fumikazu Daitou, Melvin L. Munar, Shigeki Matsuya, Seiji Nakamura e Ishikawa Kunio. "Fabrication of βTCP with Fully-Interconnected Porous Structure". Key Engineering Materials 493-494 (outubro de 2011): 135–38. http://dx.doi.org/10.4028/www.scientific.net/kem.493-494.135.
Texto completo da fonteAntonini, Carlo, Tingting Wu, Tanja Zimmermann, Abderrahmane Kherbeche, Marie-Jean Thoraval, Gustav Nyström e Thomas Geiger. "Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach". Nanomaterials 9, n.º 8 (9 de agosto de 2019): 1142. http://dx.doi.org/10.3390/nano9081142.
Texto completo da fonteKang, Yeon June, e J. Stuart Bolton. "Optimal Design of Acoustical Foam Treatments". Journal of Vibration and Acoustics 118, n.º 3 (1 de julho de 1996): 498–504. http://dx.doi.org/10.1115/1.2888212.
Texto completo da fonteHedayati, Reza, Alejandro Rubio Carpio, Salil Luesutthiviboon, Daniele Ragni, Francesco Avallone, Damiano Casalino e Sybrand van der Zwaag. "Role of Polymeric Coating on Metallic Foams to Control the Aeroacoustic Noise Reduction of Airfoils with Permeable Trailing Edges". Materials 12, n.º 7 (2 de abril de 2019): 1087. http://dx.doi.org/10.3390/ma12071087.
Texto completo da fonteKotresha, Banjara, e Nagarajan Gnanasekaran. "Comparison of Fluid Flow and Heat Transfer Through Metal Foams and Wire Mesh by Using CFD". Recent Patents on Mechanical Engineering 12, n.º 3 (26 de setembro de 2019): 220–26. http://dx.doi.org/10.2174/2212797612666190717163207.
Texto completo da fonteSingh, Robin, e Kishore K. Mohanty. "Foams Stabilized by In-Situ Surface-Activated Nanoparticles in Bulk and Porous Media". SPE Journal 21, n.º 01 (18 de fevereiro de 2016): 121–30. http://dx.doi.org/10.2118/170942-pa.
Texto completo da fonteSharma, Shyam, Rahul Khatri e Anurag Joshi. "A synergistic approach to the development of lightweight aluminium-based porous metallic foam using stir casting method". Metal Working and Material Science 25, n.º 4 (11 de dezembro de 2023): 255–67. http://dx.doi.org/10.17212/1994-6309-2023-25.4-255-267.
Texto completo da fonteKoponen, Antti I., Oleg Timofeev, Ari Jäsberg e Harri Kiiskinen. "Drainage of high-consistency fiber-laden aqueous foams". Cellulose 27, n.º 16 (11 de setembro de 2020): 9637–52. http://dx.doi.org/10.1007/s10570-020-03416-y.
Texto completo da fonteYasmin, Y., M. N. Mazlee, A. H. Norzilah, J. B. Shamsul, Rahmat Azmi, W. H. Chan e Hazrin Jahidi. "The Development and Characterisation of Porous Clay - Precipitated Calcium Carbonate". Key Engineering Materials 694 (maio de 2016): 189–94. http://dx.doi.org/10.4028/www.scientific.net/kem.694.189.
Texto completo da fonteManetti, L. L., A. S. Moita e E. M. Cardoso. "Thermal efficiency of metal foams on pool boiling". Journal of Physics: Conference Series 2116, n.º 1 (1 de novembro de 2021): 012005. http://dx.doi.org/10.1088/1742-6596/2116/1/012005.
Texto completo da fonteJang, Hyesoo, Myoung-Hwan Kim, Sang-Kyun Park, Yul-Seong Kim e Byung Chul Choi. "Simulation of Heat and Mass Transfer Characteristics for the Optimal Operating Conditions of a Gas-to-Gas Membrane Humidifier with Porous Metal Foam". Energies 13, n.º 19 (1 de outubro de 2020): 5110. http://dx.doi.org/10.3390/en13195110.
Texto completo da fonteLi, Ying Ge, Dian Cai Geng, Fa Hu Zhang e Dong Xing Du. "Proper Index of Foam Statics Characteristics on Predicting Foam Dynamics Behavior in Porous Media". Key Engineering Materials 561 (julho de 2013): 411–16. http://dx.doi.org/10.4028/www.scientific.net/kem.561.411.
Texto completo da fonteWerner, David, Johanna Maier, Nils Kaube, Vinzenz Geske, Thomas Behnisch, Matthias Ahlhelm, Tassilo Moritz, Alexander Michaelis e Maik Gude. "Tailoring of Hierarchical Porous Freeze Foam Structures". Materials 15, n.º 3 (22 de janeiro de 2022): 836. http://dx.doi.org/10.3390/ma15030836.
Texto completo da fonteLeong, K. C., L. W. Jin, I. Pranoto, H. Y. Li e J. C. Chai. "Experimental Study of Enhanced Pool Boiling Heat Transfer Using Graphite Foam Inserts". Defect and Diffusion Forum 312-315 (abril de 2011): 352–57. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.352.
Texto completo da fonteKoursari, Nektaria, Omid Arjmandi-Tash, Phillip Johnson, Anna Trybala e Victor M. Starov. "Foam drainage placed on a thin porous layer". Soft Matter 15, n.º 26 (2019): 5331–44. http://dx.doi.org/10.1039/c8sm02559b.
Texto completo da fonteHuang, Yao, Zexin Li, Lucai Wang, Leilei Sun, Xiaohong You, Wenzhan Huang e Fang Wang. "Preparation and Heat Dissipation Properties Comparison of Al and Cu Foam". Metals 12, n.º 12 (30 de novembro de 2022): 2066. http://dx.doi.org/10.3390/met12122066.
Texto completo da fonteSeciureanu, Mihai, Silviu-Marian Nastac, Maria-Violeta Guiman e Petronela Nechita. "Cellulose Fibers-Based Porous Lightweight Foams for Noise Insulation". Polymers 15, n.º 18 (17 de setembro de 2023): 3796. http://dx.doi.org/10.3390/polym15183796.
Texto completo da fonteDukhan, Nihad. "Equivalent Parallel Strands Modeling of Highly-Porous Media for Two-Dimensional Heat Transfer: Application to Metal Foam". Energies 14, n.º 19 (2 de outubro de 2021): 6308. http://dx.doi.org/10.3390/en14196308.
Texto completo da fonteXie, Rujia, Zhenxing Fang, Jiefeng Yan, Wei Wang, Xuan Cao e Xiaoyang Qiu. "Fabrication of diverse carbon forms and their reversed applications in hexane/water separation". Water Science and Technology 82, n.º 7 (24 de agosto de 2020): 1296–303. http://dx.doi.org/10.2166/wst.2020.401.
Texto completo da fontePinto, Javier, Suset Barroso-Solares, Davide Magrì, Francisco Palazon, Simone Lauciello, Athanassia Athanassiou e Despina Fragouli. "Melamine Foams Decorated with In-Situ Synthesized Gold and Palladium Nanoparticles". Polymers 12, n.º 4 (17 de abril de 2020): 934. http://dx.doi.org/10.3390/polym12040934.
Texto completo da fonteJang, Lindy K., Landon D. Nash, Grace K. Fletcher, Thomas Cheung, Andrew Soewito e Duncan J. Maitland. "Enhanced X-ray Visibility of Shape Memory Polymer Foam Using Iodine Motifs and Tantalum Microparticles". Journal of Composites Science 5, n.º 1 (6 de janeiro de 2021): 14. http://dx.doi.org/10.3390/jcs5010014.
Texto completo da fonteHsu, Y. H., I. G. Turner e A. W. Miles. "Fabrication of Porous Calcium Phosphate Bioceramics as Synthetic Cortical Bone Graft". Key Engineering Materials 284-286 (abril de 2005): 305–8. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.305.
Texto completo da fonteWadi, Vijay S., Kishore K. Jena, Shahrukh Z. Khawaja, Vengatesan Muthukumarswamy Ranagraj e Saeed M. Alhassan. "Preparation and processing of porous sulfur foams having low thermal conductivity". RSC Advances 9, n.º 8 (2019): 4397–403. http://dx.doi.org/10.1039/c8ra09127g.
Texto completo da fonteWang, Xiaoguang, Wei Li, Dehua Xiong e Lifeng Liu. "Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting". Journal of Materials Chemistry A 4, n.º 15 (2016): 5639–46. http://dx.doi.org/10.1039/c5ta10317g.
Texto completo da fonteSirikulchaikij, Sanit, Benjaporn Nooklay, Rungrote Kokoo e Matthana Khangkhamano. "Rubber Foam Processing via Bubbling Technique". Materials Science Forum 962 (julho de 2019): 96–100. http://dx.doi.org/10.4028/www.scientific.net/msf.962.96.
Texto completo da fonteRighetti, G., C. Zilio, G. Savio, R. Meneghello, M. Calati e S. Mancin. "Experimental pressure drops during the water flow into porous materials realized via additive manufacturing". Journal of Physics: Conference Series 2116, n.º 1 (1 de novembro de 2021): 012059. http://dx.doi.org/10.1088/1742-6596/2116/1/012059.
Texto completo da fonteZhu, Qing You, Weike Peng, Cheng Ji Deng e Hong Xi Zhu. "The Preparation of Porous Andalusite Refractory by Foaming Method". Advanced Materials Research 881-883 (janeiro de 2014): 1026–30. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.1026.
Texto completo da fonteKrčmářová, Nela, Jan Šleichrt, Tomáš Doktor, Daniel Kytýř e Ondřej Jiroušek. "SEMI–AUTOMATED ASSESSMENT OF MICROMECHANICAL PROPERTIES OF THE METAL FOAMS ON THE CELL-WALL LEVEL". Acta Polytechnica CTU Proceedings 7 (9 de dezembro de 2016): 72. http://dx.doi.org/10.14311/app.2017.7.0072.
Texto completo da fonteRanito, Cláudia M. S., Fernando A. Costa Oliveira e João P. Borges. "Hydroxyapatite Foams for Bone Replacement". Key Engineering Materials 284-286 (abril de 2005): 341–44. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.341.
Texto completo da fonteRibeiro, Christiane, José Carlos Bressiani e Ana Helena A. Bressiani. "Obtention of TCP Porous Ceramic Using Albumin". Materials Science Forum 530-531 (novembro de 2006): 587–92. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.587.
Texto completo da fonteMyalski, Jerzy, Bartosz Hekner e Andrzej Posmyk. "The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, CICMT (1 de setembro de 2015): 000121–24. http://dx.doi.org/10.4071/cicmt-tp44.
Texto completo da fonteSalehi, Akram, Ahmad Moloodi, Faezeh Barzegar e Jalal Mirabbasi. "The Effect of Sintering Condition on Microstructural and Mechanical Properties of Porous Nickel". Materials Science Forum 933 (outubro de 2018): 11–16. http://dx.doi.org/10.4028/www.scientific.net/msf.933.11.
Texto completo da fonteXu, Huijin, Yan Wang e Xingchao Han. "Analytical considerations of thermal storage and interface evolution of a PCM with/without porous media". International Journal of Numerical Methods for Heat & Fluid Flow 30, n.º 1 (19 de junho de 2019): 373–400. http://dx.doi.org/10.1108/hff-02-2019-0094.
Texto completo da fonteGhosh, Pinaki, e Kishore K. Mohanty. "Novel Application of Cationic Surfactants for Foams With Wettability Alteration in Oil-Wet Low-Permeability Carbonate Rocks". SPE Journal 23, n.º 06 (26 de setembro de 2018): 2218–31. http://dx.doi.org/10.2118/179598-pa.
Texto completo da fonteNowacki, J., e A. Sajek. "Trends of Joining Composite AlSi-SiC Foams". Advances in Materials Science 19, n.º 1 (1 de março de 2019): 70–82. http://dx.doi.org/10.2478/adms-2019-0006.
Texto completo da fonteMohd Razali, Razmi Noh, Bulan Abdullah, Muhammad Hussain Ismail e Norhamidi Muhamad. "Characteristic of Modified Geometrical Open-Cell Aluminum Foam by Casting Replication Process". Materials Science Forum 846 (março de 2016): 37–41. http://dx.doi.org/10.4028/www.scientific.net/msf.846.37.
Texto completo da fonteColson, Jérôme, Hassan Amer, Falk Liebner e Wolfgang Gindl-Altmutter. "Oil-absorbing porous cellulosic material from sized wood pulp fines". Holzforschung 73, n.º 1 (19 de dezembro de 2018): 83–92. http://dx.doi.org/10.1515/hf-2018-0093.
Texto completo da fonteWang, Jinping, Naveed Mushtaq, M. A. K. Yousaf Shah, Jiaen Wu, Henghui Li, Yuzheng Lu e Peng Wang. "Oxygen Reduction Response of La and Ce Co-Doped SrCoO3-δ Perovskite Oxide Grown on Porous Ni-Foam Substrate". Crystals 12, n.º 11 (16 de novembro de 2022): 1650. http://dx.doi.org/10.3390/cryst12111650.
Texto completo da fonte