Artigos de revistas sobre o tema "Poroelastodynamics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 43 melhores artigos de revistas para estudos sobre o assunto "Poroelastodynamics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Schanz, Martin. "Fast multipole method for poroelastodynamics". Engineering Analysis with Boundary Elements 89 (abril de 2018): 50–59. http://dx.doi.org/10.1016/j.enganabound.2018.01.014.
Texto completo da fonteQi, Quan, e Thomas L. Geers. "Doubly asymptotic approximations for transient poroelastodynamics". Journal of the Acoustical Society of America 102, n.º 3 (setembro de 1997): 1361–71. http://dx.doi.org/10.1121/1.420097.
Texto completo da fonteIgumnov, Leonid A., Andrey Petrov e Alexander V. Amenitskiy. "Laplace Domain Boundary Element Method for 3D Poroelastodynamics". Applied Mechanics and Materials 709 (dezembro de 2014): 117–20. http://dx.doi.org/10.4028/www.scientific.net/amm.709.117.
Texto completo da fonteIgumnov, Leonid A., Svetlana Litvinchuk, Andrey Petrov e Alexander A. Belov. "Boundary-Element Modeling of 3-D Poroelastic Half-Space Dynamics". Advanced Materials Research 1040 (setembro de 2014): 881–85. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.881.
Texto completo da fonteLiu, Chao. "Fundamental solutions to the transversely isotropic poroelastodynamics Mandel's problem". International Journal for Numerical and Analytical Methods in Geomechanics 45, n.º 15 (24 de julho de 2021): 2260–83. http://dx.doi.org/10.1002/nag.3265.
Texto completo da fonteOzyazicioglu, Mehmet. "Sudden Pressurization of a Spherical Cavity in a Poroelastic Medium". Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/632634.
Texto completo da fonteIgumnov, L. A., S. Yu Litvinchuk e Ya Yu Rataushko. "3D POROELASTODYNAMICS MODELINGWITH THE HELP OF TIME-STEPPING BOUNDARY ELEMENT SCHEME". Problems of Strength and Plasticity 76, n.º 3 (2014): 198–204. http://dx.doi.org/10.32326/1814-9146-2014-76-3-198-204.
Texto completo da fonteChou, Dean, e Po-Yen Chen. "A machine learning method to explore the glymphatic system via poroelastodynamics". Chaos, Solitons & Fractals 178 (janeiro de 2024): 114334. http://dx.doi.org/10.1016/j.chaos.2023.114334.
Texto completo da fonteVorobtsov, Igor, Aleksandr Belov e Andrey Petrov. "Development of boundary-element time-step scheme in solving 3D poroelastodynamics problems". EPJ Web of Conferences 183 (2018): 01042. http://dx.doi.org/10.1051/epjconf/201818301042.
Texto completo da fonteIgumnov, L. A., A. N. Petrov e I. V. Vorobtsov. "Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme". IOP Conference Series: Earth and Environmental Science 87 (outubro de 2017): 082022. http://dx.doi.org/10.1088/1755-1315/87/8/082022.
Texto completo da fonteThekkethil, Namshad, Simone Rossi, Hao Gao, Scott I. Heath Richardson, Boyce E. Griffith e Xiaoyu Luo. "A stabilized linear finite element method for anisotropic poroelastodynamics with application to cardiac perfusion". Computer Methods in Applied Mechanics and Engineering 405 (fevereiro de 2023): 115877. http://dx.doi.org/10.1016/j.cma.2022.115877.
Texto completo da fonteFURUKAWA, Akira, Takahiro SAITOH e Sohichi HIROSE. "DEVELOPMENT OF A FREQUENCY-DOMAIN BOUNDARY ELEMENT METHOD FOR 3-D POROELASTODYNAMICS IN GENERAL ANISOTROPY". Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)) 71, n.º 2 (2015): I_255—I_266. http://dx.doi.org/10.2208/jscejam.71.i_255.
Texto completo da fonteChou, Dean, e Po-Yen Chen. "A perceptron-based learning method for solving the inverse problem of the brain model via poroelastodynamics". Chaos, Solitons & Fractals 172 (julho de 2023): 113611. http://dx.doi.org/10.1016/j.chaos.2023.113611.
Texto completo da fonteWang, Xiaoyang, Mian Chen, Yang Xia, Yan Jin e Shunde Yin. "Transient Stress Distribution and Failure Response of a Wellbore Drilled by a Periodic Load". Energies 12, n.º 18 (10 de setembro de 2019): 3486. http://dx.doi.org/10.3390/en12183486.
Texto completo da fonteNenning, Mathias, e Martin Schanz. "Infinite elements in a poroelastodynamic FEM". PAMM 10, n.º 1 (16 de novembro de 2010): 199–200. http://dx.doi.org/10.1002/pamm.201010092.
Texto completo da fonteNenning, M., e M. Schanz. "Infinite elements in a poroelastodynamic FEM". International Journal for Numerical and Analytical Methods in Geomechanics 35, n.º 16 (10 de novembro de 2010): 1774–800. http://dx.doi.org/10.1002/nag.980.
Texto completo da fonteNagler, Loris, e Martin Schanz. "A Poroelastodynamic Plate Formulation of Extendable Order". PAMM 10, n.º 1 (16 de novembro de 2010): 197–98. http://dx.doi.org/10.1002/pamm.201010091.
Texto completo da fonteKeawsawasvong, Suraparb, e Teerapong Senjuntichai. "Poroelastodynamic fundamental solutions of transversely isotropic half-plane". Computers and Geotechnics 106 (fevereiro de 2019): 52–67. http://dx.doi.org/10.1016/j.compgeo.2018.10.012.
Texto completo da fonteSchanz, Martin, e Lars Kielhorn. "Poroelastodynamic Boundary Element Method in Time Domain: Numerical Aspects". PAMM 5, n.º 1 (dezembro de 2005): 443–44. http://dx.doi.org/10.1002/pamm.200510198.
Texto completo da fonteMeng, Meng, Stefan Z. Miska, Mengjiao Yu e Evren M. Ozbayoglu. "Fully Coupled Modeling of Dynamic Loading of the Wellbore". SPE Journal 25, n.º 03 (14 de novembro de 2019): 1462–88. http://dx.doi.org/10.2118/198914-pa.
Texto completo da fontePooladi, Ahmad, Mohammad Rahimian e Ronald Y. S. Pak. "Poroelastodynamic potential method for transversely isotropic fluid-saturated poroelastic media". Applied Mathematical Modelling 50 (outubro de 2017): 177–99. http://dx.doi.org/10.1016/j.apm.2017.05.032.
Texto completo da fonteNguyen, Khoa-Van, e Behrouz Gatmiri. "Numerical implementation of fundamental solution for solving 2D transient poroelastodynamic problems". Wave Motion 44, n.º 3 (janeiro de 2007): 137–52. http://dx.doi.org/10.1016/j.wavemoti.2006.08.002.
Texto completo da fonteXia, Yang, Yan Jin, Mian Chen e Kangping Chen. "Poroelastodynamic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences 93 (março de 2017): 82–93. http://dx.doi.org/10.1016/j.ijrmms.2017.01.008.
Texto completo da fonteHodaei, Mohammad, e Andreas Mandelis. "Quantitative osteoporosis diagnosis of porous cancellous bone using poroelastodynamic modal analysis". Journal of the Acoustical Society of America 154, n.º 5 (1 de novembro de 2023): 3101–24. http://dx.doi.org/10.1121/10.0022351.
Texto completo da fonteLiu, Chao, e Dung T. Phan. "Poroelastodynamic responses of a dual-porosity dual-permeability material under harmonic loading". Partial Differential Equations in Applied Mathematics 4 (dezembro de 2021): 100074. http://dx.doi.org/10.1016/j.padiff.2021.100074.
Texto completo da fonteChou, Dean, e Yu-Hao Cheng. "Behaviour of battery separator under different charge rates according to poroelastodynamic model". Journal of Energy Storage 56 (dezembro de 2022): 106054. http://dx.doi.org/10.1016/j.est.2022.106054.
Texto completo da fonteWapenaar, Kees, e Evert Slob. "Reciprocity and Representations for Wave Fields in 3D Inhomogeneous Parity-Time Symmetric Materials". Symmetry 14, n.º 11 (25 de outubro de 2022): 2236. http://dx.doi.org/10.3390/sym14112236.
Texto completo da fonteYe, Zi, e Zhi Yong Ai. "Poroelastodynamic response of layered unsaturated media in the vicinity of a moving harmonic load". Computers and Geotechnics 138 (outubro de 2021): 104358. http://dx.doi.org/10.1016/j.compgeo.2021.104358.
Texto completo da fonteIgumnov, L. A., I. V. Vorobtsov e S. Yu Litvinchuk. "Boundary Element Method with Runge-Kutta Convolution Quadrature for Three-Dimensional Dynamic Poroelasticity". Applied Mechanics and Materials 709 (dezembro de 2014): 101–4. http://dx.doi.org/10.4028/www.scientific.net/amm.709.101.
Texto completo da fonteXia, Yang, Yan Jin, Mian Chen e Kangping Chen. "Thermo-poroelastodynamic response of a borehole in a saturated porous medium subjected to a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences 170 (outubro de 2023): 105422. http://dx.doi.org/10.1016/j.ijrmms.2023.105422.
Texto completo da fonteMahardika, H., A. Revil e A. Jardani. "Waveform joint inversion of seismograms and electrograms for moment tensor characterization of fracking events". GEOPHYSICS 77, n.º 5 (1 de setembro de 2012): ID23—ID39. http://dx.doi.org/10.1190/geo2012-0019.1.
Texto completo da fonteLiu, Chao. "Dual-Porosity Dual-Permeability Poroelastodynamics Analytical Solutions for Mandel’s Problem". Journal of Applied Mechanics 88, n.º 1 (28 de setembro de 2020). http://dx.doi.org/10.1115/1.4048398.
Texto completo da fonteSchanz, Martin. "Poroelastodynamics: Linear Models, Analytical Solutions, and Numerical Methods". Applied Mechanics Reviews 62, n.º 3 (31 de março de 2009). http://dx.doi.org/10.1115/1.3090831.
Texto completo da fonteDing, Boyang, Alexander H. D. Cheng e Zhanglong Chen. "Fundamental Solutions of Poroelastodynamics in Frequency Domain Based on Wave Decomposition". Journal of Applied Mechanics 80, n.º 6 (21 de agosto de 2013). http://dx.doi.org/10.1115/1.4023692.
Texto completo da fonteZhu, Ge, Shimin Dong e Hongbo Wang. "Reservoir stress analysis during simultaneous pulsating hydraulic fracturing based on the poroelastodynamics model". Environmental Earth Sciences 83, n.º 13 (julho de 2024). http://dx.doi.org/10.1007/s12665-024-11720-0.
Texto completo da fonteDana, Saumik, e Birendra Jha. "Towards a poroelastodynamics framework for induced earthquakes: effect of pore pressure on fault mechanics". International Journal for Multiscale Computational Engineering, 2021. http://dx.doi.org/10.1615/intjmultcompeng.2021041646.
Texto completo da fonteIrwin, Zachariah T., John D. Clayton e Richard A. Regueiro. "A large deformation multiphase continuum mechanics model for shock loading of soft porous materials". International Journal for Numerical Methods in Engineering, 3 de janeiro de 2024. http://dx.doi.org/10.1002/nme.7411.
Texto completo da fonteCliment, Natalia, Ionut Dragos Moldovan e João António Freitas. "Three‐dimensional hybrid‐Trefftz displacement elements for poroelastodynamic problems in saturated media". International Journal for Numerical Methods in Engineering, 18 de março de 2022. http://dx.doi.org/10.1002/nme.6965.
Texto completo da fonteChou, Dean, Yun-Di Li, Chen-Yuan Chung e Zartasha Mustansar. "Using a poroelastodynamic model to investigate the dynamic behaviour of articular cartilage". Computer Methods and Programs in Biomedicine, março de 2023, 107481. http://dx.doi.org/10.1016/j.cmpb.2023.107481.
Texto completo da fonteLiu, Chao, e Dung T. Phan. "Poroelastodynamic responses and elastic moduli of a transversely isotropic porous cylinder under forced deformation test". International Journal of Mining Science and Technology, maio de 2023. http://dx.doi.org/10.1016/j.ijmst.2023.03.005.
Texto completo da fonteHeimisson, Elías Rafn, e Antonio Pio Rinaldi. "Spectral boundary integral method for simulating static and dynamic fields from a fault rupture in a poroelastodynamic solid". Geomechanics and Geophysics for Geo-Energy and Geo-Resources 8, n.º 2 (25 de março de 2022). http://dx.doi.org/10.1007/s40948-022-00368-4.
Texto completo da fonteZhang, Zhiqing, Bohao Zhou, Xibin Li e Zhe Wang. "Second-order Stokes wave-induced dynamic response and instantaneous liquefaction in a transversely isotropic and multilayered poroelastic seabed". Frontiers in Marine Science 9 (20 de dezembro de 2022). http://dx.doi.org/10.3389/fmars.2022.1082337.
Texto completo da fonteLi, Zhengze, e Haiming Zhang. "Time-domain Green’s function in poroelastic mediums and its application to 3D spontaneous rupture simulation". Geophysical Journal International, 8 de maio de 2023. http://dx.doi.org/10.1093/gji/ggad192.
Texto completo da fonte