Literatura científica selecionada sobre o tema "Poroelastodynamics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Poroelastodynamics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Poroelastodynamics"

1

Schanz, Martin. "Fast multipole method for poroelastodynamics". Engineering Analysis with Boundary Elements 89 (abril de 2018): 50–59. http://dx.doi.org/10.1016/j.enganabound.2018.01.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Qi, Quan, e Thomas L. Geers. "Doubly asymptotic approximations for transient poroelastodynamics". Journal of the Acoustical Society of America 102, n.º 3 (setembro de 1997): 1361–71. http://dx.doi.org/10.1121/1.420097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Igumnov, Leonid A., Andrey Petrov e Alexander V. Amenitskiy. "Laplace Domain Boundary Element Method for 3D Poroelastodynamics". Applied Mechanics and Materials 709 (dezembro de 2014): 117–20. http://dx.doi.org/10.4028/www.scientific.net/amm.709.117.

Texto completo da fonte
Resumo:
To describe poroelastic properties, a dynamic model of Biot’s material is used in the frame of the three-dimensional isotropic linear dynamic poroelasticity with four basic functions – displacements of the elastic skeleton and pore pressures. A direct version of the BIE method is developed. The boundary-element scheme is constructed using: regularized BIE’s, a matched element-by-element approximation, adaptive numerical integration in combination with a singularity-reducing algorithm, etc. The computer simulation is done using the boundary-element methodologies of the stepped method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Igumnov, Leonid A., Svetlana Litvinchuk, Andrey Petrov e Alexander A. Belov. "Boundary-Element Modeling of 3-D Poroelastic Half-Space Dynamics". Advanced Materials Research 1040 (setembro de 2014): 881–85. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.881.

Texto completo da fonte
Resumo:
A direct approach of the boundary element method for treating 3-D boundary-value problems of poroelastodynamics is considered. Biot’s material model with four unknown base functions is used. Computational results for the surface responses of displacements and pore pressures as functions of a force acting on a half-space weakened by a cavity are presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Liu, Chao. "Fundamental solutions to the transversely isotropic poroelastodynamics Mandel's problem". International Journal for Numerical and Analytical Methods in Geomechanics 45, n.º 15 (24 de julho de 2021): 2260–83. http://dx.doi.org/10.1002/nag.3265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ozyazicioglu, Mehmet. "Sudden Pressurization of a Spherical Cavity in a Poroelastic Medium". Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/632634.

Texto completo da fonte
Resumo:
Governing equations of poroelastodynamics in time and frequency domain are derived. The continuity equation complements the momentum balance equations. After reduction for spherical symmetry (geometry and loading), the governing equations in frequency domain are solved by introducing wave potentials. The wave propagation velocities are obtained as the real parts of the characteristic equation of the coupled ODE system. Time domain solution for Dirac type boundary pressure is obtained through numerical inversion of transformed solutions. The results are compared to the solution in classical elasticity theory found in the literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Igumnov, L. A., S. Yu Litvinchuk e Ya Yu Rataushko. "3D POROELASTODYNAMICS MODELINGWITH THE HELP OF TIME-STEPPING BOUNDARY ELEMENT SCHEME". Problems of Strength and Plasticity 76, n.º 3 (2014): 198–204. http://dx.doi.org/10.32326/1814-9146-2014-76-3-198-204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Chou, Dean, e Po-Yen Chen. "A machine learning method to explore the glymphatic system via poroelastodynamics". Chaos, Solitons & Fractals 178 (janeiro de 2024): 114334. http://dx.doi.org/10.1016/j.chaos.2023.114334.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Vorobtsov, Igor, Aleksandr Belov e Andrey Petrov. "Development of boundary-element time-step scheme in solving 3D poroelastodynamics problems". EPJ Web of Conferences 183 (2018): 01042. http://dx.doi.org/10.1051/epjconf/201818301042.

Texto completo da fonte
Resumo:
The development of time-step boundary-element scheme for the three dimensional boundaryvalue problems of poroelastodynamics is presented. The poroelastic continuum is described using Biot’s mathematical model. Poroelastic material is assumed to consist of a solid phase constituting an elastic formdefining skeleton and carrying most of the loading, and two fluid phases filling the pores. Dynamic equations of the poroelastic medium are written for unknown functions of displacement of the elastic skeleton and pore pressures of the filling materials. Green’s matrices and, based on it, boundary integral equations are written in Laplace domain. Discrete analogue are obtained by applying the collocation method to a regularized boundary integral equation. Boundary element scheme is based on time-step method of numerical inversion of Laplace transform. A modification of the time-step scheme on the nodes of Runge-Kutta methods is considered. The Runge-Kutta scheme is exemplified with 2-and 3-stage Radau schemes. The results of comparing the two schemes in analyzing a numerical example are presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Igumnov, L. A., A. N. Petrov e I. V. Vorobtsov. "Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme". IOP Conference Series: Earth and Environmental Science 87 (outubro de 2017): 082022. http://dx.doi.org/10.1088/1755-1315/87/8/082022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Poroelastodynamics"

1

Bagur, Laura. "Modeling fluid injection effects in dynamic fault rupture using Fast Boundary Element Methods". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE010.

Texto completo da fonte
Resumo:
Les tremblements de terre d'origine naturelle ou anthropique provoquent d'importants dégâts humains et matériels. Dans les deux cas, la présence de fluides interstitiels influe sur le déclenchement des instabilités sismiques. Une nouvelle question d'actualité dans la communauté est de montrer que l'instabilité sismique peut être atténuée par un contrôle actif de la pression des fluides. Dans ce travail, nous étudions la capacité des méthodes d'éléments de frontière rapides (Fast BEMs) à fournir un solveur robuste multi-physique à grande échelle nécessaire à la modélisation des processus sismiques, de la sismicité induite et de leur atténuation.Dans une première partie, un solveur BEM rapide avec différents algorithmes d'intégration temporelle est utilisé. Nous évaluons les performances de diverses méthodes à pas de temps adaptatif sur la base de problèmes de cycles sismiques 2D usuels pour les failles planes.Nous proposons une solution asismique analytique pour effectuer des études de convergence et fournir une comparaison rigoureuse des capacités des différentes méthodes en plus des problèmes de cycles sismiques de référence testés.Nous montrons qu'une méthode hybride prédiction-correction / Runge-Kutta à pas de temps adaptatif permet non seulement une résolution précise mais aussi d'incorporer à la fois les effets inertiels et les couplages hydro-mécaniques dans les simulations de rupture dynamique de faille.Dans une deuxième partie, une fois les outils numériques développés pour des configurations standards, notre objectif est de prendre en compte les effets de l'injection de fluide sur le glissement sismique. Nous choisissons le cadre poroélastodynamique pour incorporer les effets de l'injection sur l'instabilité sismique. Un modèle poroélastodynamique complet nécessiterait des coûts de calcul ou des approximations non négligeables. Nous justifions rigoureusement quels effets fluides prédominants sont en jeu lors d'un tremblement de Terre ou d'un cycle sismique. Pour cela, nous effectuons une analyse dimensionnelle des équations, et illustrons les résultats en utilisant un problème de poroelastodynamique 1D simplifié. Plus précisément, nous montrons qu'à l'échelle de temps de l'instabilité sismique, les effets inertiels sont prédominants alors qu'une combinaison de la diffusion du fluide et de la déformation élastique de la matrice solide due à la variation de la pression interstitielle devrait être privilégiée à l'échelle de temps du cycle sismique, au lieu du modèle de diffusion principalement utilisé dans la littérature
Earthquakes due to either natural or anthropogenic sources cause important human and material damage. In both cases, the presence of pore fluids influences the triggering of seismic instabilities.A new and timely question in the community is to show that the earthquake instability could be mitigated by active control of the fluid pressure. In this work, we study the ability of Fast Boundary Element Methods (Fast BEMs) to provide a multi-physic large-scale robust solver required for modeling earthquake processes, human induced seismicity and their mitigation.In a first part, a Fast BEM solver with different temporal integration algorithms is used. We assess the performances of various possible adaptive time-step methods on the basis of 2D seismic cycle benchmarks available for planar faults. We design an analytical aseismic solution to perform convergence studies and provide a rigorous comparison of the capacities of the different solving methods in addition to the seismic cycles benchmarks tested. We show that a hybrid prediction-correction / adaptive time-step Runge-Kutta method allows not only for an accurate solving but also to incorporate both inertial effects and hydro-mechanical couplings in dynamic fault rupture simulations.In a second part, once the numerical tools are developed for standard fault configurations, our objective is to take into account fluid injection effects on the seismic slip. We choose the poroelastodynamic framework to incorporate injection effects on the earthquake instability. A complete poroelastodynamic model would require non-negligible computational costs or approximations. We justify rigorously which predominant fluid effects are at stake during an earthquake or a seismic cycle. To this aim, we perform a dimensional analysis of the equations, and illustrate the results using a simplified 1D poroelastodynamic problem. We formally show that at the timescale of the earthquake instability, inertial effects are predominant whereas a combination of diffusion and elastic deformation due to pore pressure change should be privileged at the timescale of the seismic cycle, instead of the diffusion model mainly used in the literature
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Poroelastodynamics"

1

Cheng, Alexander H. D. "Poroelastodynamics". In Poroelasticity, 475–571. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25202-5_9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Schanz, Martin. "Poroelastodynamic boundary element formulation". In Wave Propagation in Viscoelastic and Poroelastic Continua, 77–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44575-3_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Domínguez, J., e R. Gallego. "Boundary Element Approach to Coupled Poroelastodynamic Problems". In Solid Mechanics and Its Applications, 125–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8698-6_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Schanz, Martin, e Dobromil Pryl. "Boundary Element Formulations for Linear Poroelastodynamic Continua". In Analysis and Simulation of Multifield Problems, 323–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36527-3_39.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Climent, Natalia, Ionut Moldovan e António Gomes Correia. "FreeHyTE: A Hybrid-Trefftz Finite Element Platform for Poroelastodynamic Problems". In Lecture Notes in Civil Engineering, 73–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77230-7_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Pryl, Dobromil, Martin Schanz e Lars Kielhorn. "Poroelastodynamic Boundary Element Method in time domain". In Poromechanics III - Biot Centennial (1905-2005). Taylor & Francis, 2005. http://dx.doi.org/10.1201/noe0415380416.ch58.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Poroelastodynamics"

1

Liu, Chao, e Dung T. Phan. "Determination of the Connected and Isolated Porosities by a Poroelastodynamics Model". In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23741-ea.

Texto completo da fonte
Resumo:
Abstract It is essential to know the connected and isolated porosities that play a crucial role in the estimation of in-situ hydrocarbon reserves of a reservoir and the determination of favorable target production regions. Yet, no effective methods are found in the literature to determine the connected and isolated porosities. In this work, we present a method to determine simultaneously both the connected and isolated porosities, using the theory of dual-porosity single-permeability poroelastodynamics. This theory is derived based on the dual-porosity dual-permeability poroelastodynamics. The dual-porosity single-permeability poroelastodynamics is associated with elastic waves propagation in fluid saturated rocks with connected and isolated porosities. Phenomena including wave dispersion and attenuation occur simultaneously due to the coupled motions of the rock matrix and fluids in pore spaces. An example is presented to demonstrate the application of the dual-porosity single-permeability poroelastodynamics in the determination of the connected and isolated porosities.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Schanz, M. "Fast Multipole Accelerated Boundary Element Method for Poroelastodynamics". In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.210.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Liu, Chao. "Anisotropic Poroelastodynamics Solution and Elastic Moduli Dispersion of a Naturally Fractured Rock". In Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213366-ms.

Texto completo da fonte
Resumo:
Abstract In this work, the theory of anisotropic dual-porosity dual-permeability poroelastodynamics is used to simulate the responses of pore pressure, displacement, and stress of a fluid-saturated transversely isotropic naturally fractured cylindrical rock sample. The sample is subjected to a harmonic loading with a constant displacement amplitude at one end. These solutions are then use d to calculate the elastic moduli dispersion of the rock sample. A transversely isotropic water-saturated rock sample is selected as an example to demonstrate the simulation and the mechanisms of the dispersion due to the coupled motions of the rock matrix and fluids in pore spaces and fractures. The effects of material anisotropy on the poromechanical responses and the elastic modulid dispersion of the rock sample are presented. We also show excellent matches between the simulation and laboratory measurements of the dynamic Young's moduli of two shale, one clay, and three sedimentary rock samples.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ipatov, A. A., L. A. Igumnov, F. Dell’Isola e S. Yu Litvinchuk. "Application of modified Durbun’s algorithm in solving poroelastodynamic problems via boundary element method". In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027676.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Shih, Po-Jen, e Meng-Cheng Ho. "Modified Steepest-Descent Path Method in Solving Weyl Integration Representation of Vector Wave Bases". In ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-1217.

Texto completo da fonte
Resumo:
Weyl integration representation is ever regarded as a wave source. Weyl integration has feature of double Fourier integral formulas, and the traditional steepest-descent path method has been dealt with convergence of oscillatory terms in the integrands of wave source. Unfortunately, to solve the reflective or scattering waves, the equations contain singular poles and branch cuts on the complex plane, because variables of the integrands are shown in denominators and in square-root terms. Singular poles represent the Rayleigh waves, and they can be solved by residue values. However, the branch cuts on the complex plane represent the head waves, and integral paths are not allowed to pass across the branch cuts. They need to solve through applying numerical integration. This paper provides a deformed integral path from the traditional integral path to the path in which the exponential terms could decay rapidly, the singular poles are considered, and the branch cut paths are counted. This demonstrates benefits of the modified steepest-descent path method in solving the vector wave bases formed in Weyl integration for elastodynamic, poroelastodynamic, and electromagnetic waves.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Liu, Y., V. Dokhani, Y. Ma, H. Miao e S. Zamiran. "Effects of Dynamic Surge Pressure on Wellbore Stability". In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0164.

Texto completo da fonte
Resumo:
ABSTRACT This study presents a coupled poroelastodynamic model for wellbore stability analysis considering the effects of tripping operation and the flow communication between wellbore and formation. First, a transient hydraulic model is developed based on transient pressure propagation in the wellbore to predict the generated surge pressures during tripping operation. The transient hydraulic model is transformed into ordinary differential equations using the method of characteristics and is finally solved through the finite difference method. Then, the results are coupled with a wellbore stability model to include the effect of wellbore pressure variation with time. The developed transient hydraulic model is validated through comparisons with available field data and modeling results in the literature. Comparing the surge pressure predictions of the model with field data indicates a consistent and accurate prediction of the transient surge pressure. The results further show that a maximum surge pressure can be expected before approaching an equilibrium surge pressure, which could not be predicted by the previous surge models due to ignorance of the acceleration terms. The total radial and tangential stresses are calculated and shown to vary versus time. The results indicate that the induced pressure initially rises to a maximum value and then decays with time, but the maximum value is not necessarily always at the wellbore wall. The results of tensile and shear failure analysis indicate time-dependent failures can occur in the vicinity of the borehole depending on the magnitude of the tripping velocity. INTRODUCTION Tripping is a frequent operation that is running pipes into or out of a well for different reasons, e.g., replacing a dull bit, replacing bottom hole assembly, running logging tools, running casings or liners, and wellbore conditioning. It has long been known that the tripping operation can induce surge or swab pressure if running into or out of the well, respectively. In fact, the axial movement of a drill string, like a piston, in the wellbore results in pressure perturbations. Pioneer studies such as Cannon (1934) and Goins et al. (1951) show that a high tripping velocity can cause drilling problems such as formation fracture or gas kicks. The magnitude of surge pressures typically may not exceed the safe pressure limit in most wells. However, there are critical wells such as deep wells or depleted reservoirs where the surge and swab pressures shall be maintained within a narrow pressure limit. Although a low tripping velocity can avoid borehole problems, such practice will ultimately increase the Non-Productive Time (NPT) and hence the total drilling cost. Accurate prediction of surge and swab pressures helps to find the maximum allowable tripping speed and reduce the NPT, which all optimize the drilling performance. In the first part of this study, a very brief review of fundamental studies about surge/swab modeling and associated wellbore stability concerns is presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia