Artigos de revistas sobre o tema "Pore extra-large"

Siga este link para ver outros tipos de publicações sobre o tema: Pore extra-large.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pore extra-large".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Kang, Jong Hun, Dan Xie, Stacey I. Zones e Mark E. Davis. "Transformation of Extra-Large Pore Germanosilicate CIT-13 Molecular Sieve into Extra-Large Pore CIT-5 Molecular Sieve". Chemistry of Materials 31, n.º 23 (6 de novembro de 2019): 9777–87. http://dx.doi.org/10.1021/acs.chemmater.9b03675.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bhaumik, Asim, Sujit Samanta e Nawal Kishor Mal. "Highly active disordered extra large pore titanium silicate". Microporous and Mesoporous Materials 68, n.º 1-3 (março de 2004): 29–35. http://dx.doi.org/10.1016/j.micromeso.2003.12.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Shamzhy, Mariya V., Oleksiy V. Shvets, Maksym V. Opanasenko, Pavel S. Yaremov, Liana G. Sarkisyan, Pavla Chlubná, Arnošt Zukal, V. Reddy Marthala, Martin Hartmann e Jiří Čejka. "Synthesis of isomorphously substituted extra-large pore UTL zeolites". Journal of Materials Chemistry 22, n.º 31 (2012): 15793. http://dx.doi.org/10.1039/c2jm31725g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sarkar, Krishanu, Subhash Chandra Laha e Asim Bhaumik. "A new extra large pore organic–inorganic hybrid silicoaluminophosphate". J. Mater. Chem. 16, n.º 25 (2006): 2439–44. http://dx.doi.org/10.1039/b600989a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lobo, Raul F., Michael Tsapatsis, Clemens C. Freyhardt, Shervin Khodabandeh, Paul Wagner, Cong-Yan Chen, Kenneth J. Balkus, Stacey I. Zones e Mark E. Davis. "Characterization of the Extra-Large-Pore Zeolite UTD-1". Journal of the American Chemical Society 119, n.º 36 (setembro de 1997): 8474–84. http://dx.doi.org/10.1021/ja9708528.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Davis, Mark E. "The Quest For Extra-Large Pore, Crystalline Molecular Sieves". Chemistry - A European Journal 3, n.º 11 (novembro de 1997): 1745–50. http://dx.doi.org/10.1002/chem.19970031104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Wang, Yichen, Hongjuan Wang, Yuanchao Shao, Tianduo Li, Takashi Tatsumi e Jin-Gui Wang. "Direct Synthesis of Ti-Containing CFI-Type Extra-Large-Pore Zeolites in the Presence of Fluorides". Catalysts 9, n.º 3 (14 de março de 2019): 257. http://dx.doi.org/10.3390/catal9030257.

Texto completo da fonte
Resumo:
Ti-containing zeolites showed extremely high activity and selectivity in numerous friendly environmental oxidation reactions with hydrogen peroxide as a green oxidant. It will be in high demand to synthesize Ti-containing crystalline extra-large-pore zeolites due to the severe restrictions of medium-pore and/or large-pore zeolites for bulky reactant oxidations. However, the direct synthesis of extra-large-pore Ti-zeolites was still challengeable. Here, we firstly report a strategy to directly synthesize high-performance Ti-containing CFI-type extra-large-pore (Ti-CFI) zeolites assisted with fluorides. The well-crystallized Ti-CFI zeolites with framework titanium species could be synthesized in the hydrofluoric acid system with seed or in the ammonium fluoride system without seed, which showed higher catalytic activity for cyclohexene oxidation than that synthesized from the traditional LiOH system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Matos, Jivaldo R., Lucildes P. Mercuri, Michal Kruk e Mietek Jaroniec. "Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues". Chemistry of Materials 13, n.º 5 (maio de 2001): 1726–31. http://dx.doi.org/10.1021/cm000964p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Martínez-Franco, Raquel, Cecilia Paris, Manuel Moliner e Avelino Corma. "Synthesis of highly stable metal-containing extra-large-pore molecular sieves". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, n.º 2061 (28 de fevereiro de 2016): 20150075. http://dx.doi.org/10.1098/rsta.2015.0075.

Texto completo da fonte
Resumo:
The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV–Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Brønsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gao, Zihao Rei, Salvador R. G. Balestra, Jian Li e Miguel A. Camblor. "Synthesis of Extra‐Large Pore, Large Pore and Medium Pore Zeolites Using a Small Imidazolium Cation as the Organic Structure‐Directing Agent". Chemistry – A European Journal 27, n.º 72 (17 de novembro de 2021): 18109–17. http://dx.doi.org/10.1002/chem.202103288.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Li, Ting, Cheng Chen, Furong Guo, Jing Li, Hongmei Zeng e Zhien Lin. "Extra-large-pore metal sulfate-oxalates with diamondoid and zeolitic frameworks". Inorganic Chemistry Communications 93 (julho de 2018): 33–36. http://dx.doi.org/10.1016/j.inoche.2018.05.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Prasad, S., e Tran Chin Yang. "Iron-incorporation in extra-large pore molecular sieve in acid medium". Catalysis Letters 28, n.º 2-4 (1994): 269–75. http://dx.doi.org/10.1007/bf00806056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Burton, Allen, Saleh Elomari, Cong-Yan Chen, Ronald C. Medrud, Ignatius Y. Chan, Lucy M. Bull, Charles Kibby, Thomas V. Harris, Stacey I. Zones e E. Steven Vittoratos. "SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites". Chemistry - A European Journal 9, n.º 23 (5 de dezembro de 2003): 5737–48. http://dx.doi.org/10.1002/chem.200305238.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

DAVIS, M. E. "ChemInform Abstract: The Quest for Extra-Large Pore, Crystalline Molecular Sieves". ChemInform 29, n.º 2 (24 de junho de 2010): no. http://dx.doi.org/10.1002/chin.199802260.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Zwijnenburg, Martijn A., Stefan T. Bromley, Jacobus C. Jansen e Thomas Maschmeyer. "Toward Understanding Extra-Large-Pore Zeolite Energetics and Topology: A Polyhedral Approach". Chemistry of Materials 16, n.º 1 (janeiro de 2004): 12–20. http://dx.doi.org/10.1021/cm034132d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Bai, Risheng, Qiming Sun, Ning Wang, Yongcun Zou, Guanqi Guo, Sara Iborra, Avelino Corma e Jihong Yu. "Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites". Chemistry of Materials 28, n.º 18 (9 de setembro de 2016): 6455–58. http://dx.doi.org/10.1021/acs.chemmater.6b03179.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Přech, Jan, e Jiří Čejka. "UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties". Catalysis Today 277 (novembro de 2016): 2–8. http://dx.doi.org/10.1016/j.cattod.2015.09.036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Bjørgen, Morten, Anlaug Haukvik Grave, Saepurahman, Andrey Volynkin, Karina Mathisen, Karl Petter Lillerud, Unni Olsbye e Stian Svelle. "Spectroscopic and catalytic characterization of extra large pore zeotype H-ITQ-33". Microporous and Mesoporous Materials 151 (março de 2012): 424–33. http://dx.doi.org/10.1016/j.micromeso.2011.09.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Jiang, Jiuxing, Yan Xu, Peng Cheng, Qiming Sun, Jihong Yu, Avelino Corma e Ruren Xu. "Investigation of Extra-Large Pore Zeolite Synthesis by a High-Throughput Approach". Chemistry of Materials 23, n.º 21 (8 de novembro de 2011): 4709–15. http://dx.doi.org/10.1021/cm201221z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tontisirin, Supak, e Stefan Ernst. "Zeolite SSZ-53: An Extra-Large-Pore Zeolite with Interesting Catalytic Properties". Angewandte Chemie International Edition 46, n.º 38 (24 de setembro de 2007): 7304–6. http://dx.doi.org/10.1002/anie.200701634.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Matos, Jivaldo R., Lucildes P. Mercuri, Michal Kruk e Mietek Jaroniec. "ChemInform Abstract: Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues." ChemInform 32, n.º 35 (28 de agosto de 2001): no. http://dx.doi.org/10.1002/chin.200135256.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Jiang, Jiuxing, Jihong Yu e Avelino Corma. "Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures". Angewandte Chemie International Edition 49, n.º 18 (19 de abril de 2010): 3120–45. http://dx.doi.org/10.1002/anie.200904016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Smeets, Stef, Dan Xie, Christian Baerlocher, Lynne B. McCusker, Wei Wan, Xiaodong Zou e Stacey I. Zones. "High-Silica Zeolite SSZ-61 with Dumbbell-Shaped Extra-Large-Pore Channels". Angewandte Chemie International Edition 53, n.º 39 (1 de agosto de 2014): 10398–402. http://dx.doi.org/10.1002/anie.201405658.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Smeets, Stef, Dan Xie, Christian Baerlocher, Lynne B. McCusker, Wei Wan, Xiaodong Zou e Stacey I. Zones. "High-Silica Zeolite SSZ-61 with Dumbbell-Shaped Extra-Large-Pore Channels". Angewandte Chemie 126, n.º 39 (1 de agosto de 2014): 10566–70. http://dx.doi.org/10.1002/ange.201405658.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Yang, Jingjing, Yue-Biao Zhang, Qi Liu, Christopher A. Trickett, Enrique Gutiérrez-Puebla, M. Ángeles Monge, Hengjiang Cong, Abdulrahman Aldossary, Hexiang Deng e Omar M. Yaghi. "Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks". Journal of the American Chemical Society 139, n.º 18 (27 de abril de 2017): 6448–55. http://dx.doi.org/10.1021/jacs.7b02272.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ronchi, Laura, Andrey Ryzhikov, Habiba Nouali, T. Jean Daou, Sébastien Albrecht e Joël Patarin. "Extra large pore opening CFI and DON-type zeosils for mechanical energy storage". Microporous and Mesoporous Materials 255 (janeiro de 2018): 211–19. http://dx.doi.org/10.1016/j.micromeso.2017.07.039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Liu, Leifeng, Zheng-Bao Yu, Hong Chen, Youqian Deng, Bao-Lin Lee e Junliang Sun. "Disorder in Extra-Large Pore Zeolite ITQ-33 Revealed by Single Crystal XRD". Crystal Growth & Design 13, n.º 10 (26 de agosto de 2013): 4168–71. http://dx.doi.org/10.1021/cg400880a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Han, Zeyu, Qingpeng Wang, Guixian Li, Dong Ji e Xinhong Zhao. "Simplified ionothermal synthesis of extra-large-pore aluminophosphate molecular sieve with -CLO topology". Solid State Sciences 100 (fevereiro de 2020): 106118. http://dx.doi.org/10.1016/j.solidstatesciences.2020.106118.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Přech, Jan, Martin Kubů e Jiří Čejka. "Synthesis and catalytic properties of titanium containing extra-large pore zeolite CIT-5". Catalysis Today 227 (maio de 2014): 80–86. http://dx.doi.org/10.1016/j.cattod.2014.01.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Zi, Wenwen, Xianshu Cai, Feng Jiao e Hongbin Du. "Synthesis, Structure and Properties of an Extra‐Large‐Pore Aluminosilicate Zeolite NUD‐6". Chemistry – A European Journal 26, n.º 71 (19 de novembro de 2020): 17143–48. http://dx.doi.org/10.1002/chem.202003183.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Qian, Kun, Yilin Wang, Zhiqiang Liang e Jiyang Li. "Germanosilicate zeolite ITQ-44 with extra-large 18-rings synthesized using a commercial quaternary ammonium as a structure-directing agent". RSC Advances 5, n.º 78 (2015): 63209–14. http://dx.doi.org/10.1039/c5ra09942k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Shamzhy, Mariya, Maksym Opanasenko, Patricia Concepción e Agustín Martínez. "New trends in tailoring active sites in zeolite-based catalysts". Chemical Society Reviews 48, n.º 4 (2019): 1095–149. http://dx.doi.org/10.1039/c8cs00887f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Paillaud, J. L. "Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings". Science 304, n.º 5673 (14 de maio de 2004): 990–92. http://dx.doi.org/10.1126/science.1098242.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Gao, Zi-Hao, Fei-Jian Chen, Lei Xu, Lin Sun, Yan Xu e Hong-Bin Du. "A Stable Extra-Large-Pore Zeolite with Intersecting 14- and 10-Membered-Ring Channels". Chemistry - A European Journal 22, n.º 40 (17 de agosto de 2016): 14367–72. http://dx.doi.org/10.1002/chem.201602419.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Chen, Fei-Jian, Yan Xu e Hong-Bin Du. "An Extra-Large-Pore Zeolite with Intersecting 18-, 12-, and 10-Membered Ring Channels". Angewandte Chemie International Edition 53, n.º 36 (11 de julho de 2014): 9592–96. http://dx.doi.org/10.1002/anie.201404608.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Yang, Boting, Jin-Gang Jiang, Hao Xu, Haihong Wu, Mingyuan He e Peng Wu. "Synthesis of Extra-Large-Pore Zeolite ECNU-9 with Intersecting 14*12-Ring Channels". Angewandte Chemie 130, n.º 30 (28 de junho de 2018): 9659–63. http://dx.doi.org/10.1002/ange.201805535.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Jiang, Jiuxing, Jihong Yu e Avelino Corma. "ChemInform Abstract: Extra-Large-Pore Zeolites: Bridging the Gap Between Micro and Mesoporous Structures". ChemInform 41, n.º 31 (9 de julho de 2010): no. http://dx.doi.org/10.1002/chin.201031239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Chen, Fei-Jian, Yan Xu e Hong-Bin Du. "An Extra-Large-Pore Zeolite with Intersecting 18-, 12-, and 10-Membered Ring Channels". Angewandte Chemie 126, n.º 36 (11 de julho de 2014): 9746–50. http://dx.doi.org/10.1002/ange.201404608.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Yang, Boting, Jin-Gang Jiang, Hao Xu, Haihong Wu, Mingyuan He e Peng Wu. "Synthesis of Extra-Large-Pore Zeolite ECNU-9 with Intersecting 14*12-Ring Channels". Angewandte Chemie International Edition 57, n.º 30 (28 de junho de 2018): 9515–19. http://dx.doi.org/10.1002/anie.201805535.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Gao, Zhongquan, Yunzhang Rao, Liang Shi, Run Xiang e Zhihua Yang. "Effect of Magnesium Sulfate Solution on Pore Structure of Ionic Rare Earth Ore during Leaching Process". Minerals 13, n.º 2 (20 de fevereiro de 2023): 294. http://dx.doi.org/10.3390/min13020294.

Texto completo da fonte
Resumo:
During in situ leaching of ionic rare earth ore, the pore structure of the orebody changes due to the chemical replacement reaction between the leaching agent and the rare earth ore. To explore the influence of leaching agents on the pore structure of ionic rare earth ore during the leaching process, magnesium sulfate solutions with different concentrations and pH are used as leaching agents in this paper. An experimental method of indoor simulated column leaching, a Zetaprobe potential analyzer, and an NM-60 rock microstructure analyzer to measure parameters, including surface zeta potential, T2 map, and the pore structure of rare-earth ore particles, were used to analyze the influence law of magnesium sulfate solution on the pore structure of ionic rare earth ore. The result proves that pure H2O leaching has little effect on the surface Zeta potential and the internal pore structure of the ore particles. In the leaching process of magnesium sulfate solutions with different concentrations, the absolute value of Zeta potential decreases, and the internal pore structure evolves from medium, large, and extra-large to small pores. In the leaching process of magnesium sulfate solutions with different pH, the absolute value of Zeta potential decreases and then increases slightly with the end of the ion exchange reaction. The internal pore structure generally shows a decrease in the number of small and extra-large pores and an increase in the number of medium and large pores. According to the analysis, the concentration and pH of the leaching agent cause the change of thickness of the electric double layer of the fine particles in the orebody, break the balance of interaction force between soil particles, and result in the evolution of a micropore structure of orebody during leaching.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Veselý, Ondřej, Pavla Eliášová, Russell E. Morris e Jiří Čejka. "Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P". Materials Advances 2, n.º 12 (2021): 3862–70. http://dx.doi.org/10.1039/d1ma00212k.

Texto completo da fonte
Resumo:
The germanosilicate zeolite UTL was reconstructed from the layered precursor IPC-1P using the modified Assembly–Disassembly–Organisation–Reassembly (ADOR) process. The reverse ADOR is a promising new route for synthesis of extra-large-pore zeolites.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Pal, Nabanita, Manidipa Paul e Asim Bhaumik. "New Extra Large Pore Chromium Oxophenylphosphate: An Efficient Catalyst in Liquid Phase Partial Oxidation Reactions". Open Catalysis Journal 2, n.º 1 (15 de dezembro de 2009): 156–62. http://dx.doi.org/10.2174/1876214x00902010156.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Jiang, Jiuxing, Yifeng Yun, Xiaodong Zou, Jose Luis Jorda e Avelino Corma. "ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels". Chemical Science 6, n.º 1 (2015): 480–85. http://dx.doi.org/10.1039/c4sc02577f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kang, Jong Hun, Dan Xie, Stacey I. Zones, Stef Smeets, Lynne B. McCusker e Mark E. Davis. "Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings". Chemistry of Materials 28, n.º 17 (30 de agosto de 2016): 6250–59. http://dx.doi.org/10.1021/acs.chemmater.6b02468.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Martínez-Franco, Raquel, Junliang Sun, German Sastre, Yifeng Yun, Xiaodong Zou, Manuel Moliner e Avelino Corma. "Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2166 (8 de junho de 2014): 20140107. http://dx.doi.org/10.1098/rspa.2014.0107.

Texto completo da fonte
Resumo:
The combination of different experimental techniques, such as solid 13 C and 1 H magic-angle spinning NMR spectroscopy, fluorescence spectroscopy and powder X-ray diffraction, together with theoretical calculations allows the determination of the unique structure directing the role of the bulky aromatic proton sponge 1,8- bis (dimethylamino)naphthalene (DMAN) towards the extra-large-pore ITQ-51 zeolite through supra-molecular assemblies of those organic molecules.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Du, Jinhao, Ruting Yuan, Feng Lin, Lijun Liao, Ge Yang, Furong Tao, Yuezhi Cui e Christine E. A. Kirschhock. "Impact of residual sodium cations in azonia-spiro templates on the formation of large and extra-large pore zeolites". Microporous and Mesoporous Materials 336 (maio de 2022): 111891. http://dx.doi.org/10.1016/j.micromeso.2022.111891.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Cano, María L., Frances L. Cozens, Hermenegildo García, Vicente Martí e J. C. Scaiano. "Intrazeolite Photochemistry. 13. Photophysical Properties of Bulky 2,4,6-Triphenylpyrylium and Tritylium Cations within Large- and Extra-Large-Pore Zeolites". Journal of Physical Chemistry 100, n.º 46 (janeiro de 1996): 18152–57. http://dx.doi.org/10.1021/jp960730m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Zhang, Lei, Zhi Ping Li e Guo Ming Liu. "Permeability Curves Characteristic Analysis of L Oilfield". Advanced Materials Research 616-618 (dezembro de 2012): 898–901. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.898.

Texto completo da fonte
Resumo:
The L oilfield Cretaceous (M-I-1), Jurassic Department (Ю-0-3) clastic pore types, including primary porosity, secondary porosity and cracks in three categories, their characteristics and the degree of development. Chalk Department of particles holes and grain dissolution porosity, an average of 53.2%, followed by argillaceous porous and contraction joints, while a small number of particles dissolved pore, showing a small amount of paste particles seam and tensile crack; Jurassic inter-granular holes and intra-granular dissolution porosity is developed, accounting for the porosity as high as 95%, while a small amount of argillaceous porous and granulizing hole and a very small amount of mold holes. L Oilfield Cretaceous and Jurassic reservoirs inter-granular pores, inter-granular dissolution pore, pore throat combination M-I-1, mainly to large - in the hole, micro-throat, Ю-0-3 large - in the hole Extra Coarse - rough throat-based thin throat, Ю-0-1, Jurassic sandstone pore structure better than the Cretaceous.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Xue, Yun-Shan, Dayou Shi, Haitao Zhang, Weiwei Ju, Hua Mei e Yan Xu. "A series of color-tunable light-emitting open-framework lanthanide sulfates containing extra-large 36-membered ring channels". CrystEngComm 19, n.º 40 (2017): 5989–94. http://dx.doi.org/10.1039/c7ce01319a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Zi, Wen‐Wen, Zihao Gao, Jun Zhang, Bao‐Xun Zhao, Xian‐Shu Cai, Hong‐Bin Du e Fei‐Jian Chen. "An Extra‐Large‐Pore Pure Silica Zeolite with 16×8×8‐Membered Ring Pore Channels Synthesized using an Aromatic Organic Directing Agent". Angewandte Chemie 132, n.º 10 (28 de janeiro de 2020): 3976–79. http://dx.doi.org/10.1002/ange.201915232.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia