Literatura científica selecionada sobre o tema "Polymers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Polymers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Polymers"
Hili, Ryan, Chun Guo, Dehui Kong e Yi Lei. "Expanding the Chemical Diversity of DNA". Synlett 29, n.º 11 (20 de março de 2018): 1405–14. http://dx.doi.org/10.1055/s-0036-1591959.
Texto completo da fonteChen, Guang, Lei Tao e Ying Li. "Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model". Polymers 13, n.º 11 (7 de junho de 2021): 1898. http://dx.doi.org/10.3390/polym13111898.
Texto completo da fonteBrostow, Witold, Hanna Fałtynowicz, Osman Gencel, Andrei Grigoriev, Haley E. Hagg Lobland e Danny Zhang. "Mechanical and Tribological Properties of Polymers and Polymer-Based Composites". Chemistry & Chemical Technology 14, n.º 4 (15 de dezembro de 2020): 514–20. http://dx.doi.org/10.23939/chcht14.04.514.
Texto completo da fonteChen, Jian Fang, e Ai Hua Ling. "Design and Synthesis of a Miktoarm Star PMMAZO-(PCL)2 Copolymer". Advanced Materials Research 332-334 (setembro de 2011): 2089–92. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.2089.
Texto completo da fonteMartens, C. M., R. Tuinier e M. Vis. "Depletion interaction mediated by semiflexible polymers". Journal of Chemical Physics 157, n.º 15 (21 de outubro de 2022): 154102. http://dx.doi.org/10.1063/5.0112015.
Texto completo da fonteShahzadi, Maria, Taimoor Hassan e Sana Saeed. "Application of Natural Polymers in Wound Dressings". Pakistan Journal of Medical and Health Sciences 16, n.º 10 (30 de outubro de 2022): 1–2. http://dx.doi.org/10.53350/pjmhs2216101.
Texto completo da fonteCaldona, Eugene B., Ernesto I. Borrego, Ketki E. Shelar, Karl M. Mukeba e Dennis W. Smith. "Ring-Forming Polymerization toward Perfluorocyclobutyl and Ortho-Diynylarene-Derived Materials: From Synthesis to Practical Applications". Materials 14, n.º 6 (18 de março de 2021): 1486. http://dx.doi.org/10.3390/ma14061486.
Texto completo da fonteEwert, Ernest, Izabela Pospieszna-Markiewicz, Martyna Szymańska, Adrianna Kurkiewicz, Agnieszka Belter, Maciej Kubicki, Violetta Patroniak, Marta A. Fik-Jaskółka e Giovanni N. Roviello. "New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies". Molecules 28, n.º 1 (3 de janeiro de 2023): 400. http://dx.doi.org/10.3390/molecules28010400.
Texto completo da fonteBecskereki, Gergely, George Horvai e Blanka Tóth. "The Selectivity of Molecularly Imprinted Polymers". Polymers 13, n.º 11 (28 de maio de 2021): 1781. http://dx.doi.org/10.3390/polym13111781.
Texto completo da fonteChang, L. L., D. L. Raudenbush e S. K. Dentel. "Aerobic and anaerobic biodegradability of a flocculant polymer". Water Science and Technology 44, n.º 2-3 (1 de julho de 2001): 461–68. http://dx.doi.org/10.2166/wst.2001.0802.
Texto completo da fonteTeses / dissertações sobre o assunto "Polymers"
Schlindwein, Walkiria Santos. "Conducting polymers and polymer electrolytes". Thesis, University of Leicester, 1990. http://hdl.handle.net/2381/33889.
Texto completo da fonteMuangpil, Sairoong. "Functionalised polymers and nanoparticle/polymer blends". Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654111.
Texto completo da fonteChester, Shawn Alexander. "Mechanics of amorphous polymers and polymer gels". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68898.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 345-356).
Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials in a temperature range which spans the glass transition temperature of the material. We have formulated such a theory, and also numerically implemented our theory in a finite element program. The material parameters in the theory have been calibrated for poly(methyl methacrylate), polycarbonate, and Zeonex - a cyclo-olefin polymer. The predictive capabilities of the constitutive theory and its numerical implementation have been validated by comparing the results from a suite of validation experiments against corresponding results from numerical simulations. Amorphous chemically-crosslinked polymers form a relatively new class of thermallyactuated shape-memory polymers. Several biomedical applications for thermally-actuated shape-memory polymers have been proposed/demonstrated in the recent literature. However, actual use of such polymers and devices made from these materials is still quite limited. For the variety of proposed applications to be realized with some confidence in their performance, it is important to develop a constitutive theory for the thermo-mechanical response of these materials and a numerical simulation-based design capability which, when supported with experimental data, will allow for the prediction of the response of devices made from these materials under service conditions. We have developed such a theory and a numerical simulation capability, and demonstrated its utility for modeling the thermo-mechanical response of the shape-memory polymer tBA-PEGDMA. An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain thermally-responsive gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a thermodynamically-consistent continuum-level theory to describe the coupled mechanical-deformation, fluid permeation, and heat transfer of such gels. We have numerically implemented our theory in a finite element program by writing thermo-chemo-mechanically coupled elements. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally-responsive swelling/de-swelling of such materials.
by Shawn Alexander Chester.
Ph.D.
Mohagheghian, Iman. "Impact response of polymers and polymer nanocomposites". Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648854.
Texto completo da fonteSun, Shuangyi. "Alkoxyphenacyl Polymers: A Novel Photodegradable Polymer Platform". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1424234383.
Texto completo da fonteMichal, Brian. "Multi-Functional Stimuli-Responsive Polymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459440396.
Texto completo da fonteSmartt, William Mark. "Formation of microporous polymer via thermally-induced phase transformations in polymer solutions". Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/32853.
Texto completo da fonteAmalou, Zhor. "Contribution à l'étude de la structure semi-cristalline des polymères à chaînes semi-rigides". Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210832.
Texto completo da fonteDans ce travail, une contribution originale est apportée à cette étude, et cela en combinant diverses techniques expérimentales permettant des mesures calorifiques et structurales en températures et temps réels. L’intérêt c’est porté sur les polymères linéaires aromatiques tels que le polyéthylènes teréphthalate, PET, et le polytriméthylène téréphthalate, PTT, caractérisés par une température de transition vitreuse supérieure à l’ambiante ( Tg > 50°) et une température de fusion élevée (Tm>220°C), offrant ainsi une assez large gamme de température de cristallisation (Tm-Tg). L’étude de la structure semi-cristalline du PET à l’échelle du nanomètre et de la relaxation des phases amorphes présentes dans sa structure est facilitée par l’utilisation d’un diluant amorphe tel que le polyétherimide (PEI), qui forme un mélange miscible avec le PET.
L’utilisation de microscopie de force atomique AFM à haute température a permis d’observer la cristallisation isotherme de PET en temps réel et de décrire ainsi la cristallisation secondaire comme un processus d'épaississement des piles lamellaires. De plus, l’analyse de la structure semi-cristalline du PET et du PTT, dans l’espace direct, sont en faveur d’un modèle structural homogène, où l’épaisseur lamellaire moyenne est légèrement inférieure à l’épaisseur moyenne des régions amorphes interlamellaires. Ces résultats ont permis, d’une part, d’apporter une meilleure interprétation aux données obtenues par diffusion des rayons X aux petits angles (SAXS), et d’autre part, d’ interpréter le comportement de fusion multiple caractéristique des polymères semi-cristallin à chaînes semi-rigides par le seul processus de fusion-recristallisation. Dans l’étude investiguée sur les mélanges PET/PEI et sur le PTT pur, on montre que la cinétique d’un tel processus est particulièrement rapide comparée à la cristallisation. De plus, les observations par AFM et par microscopie optique de même que les mesures SAXS en temps réel ont montré la simultanéité et la compétition existant entre la fusion des cristaux et leur réorganisation durant la chauffe. Par ailleurs, la relaxation des régions amorphes interlamellaires, souvent considérées comme rigides, a pu être mise en évidence par les mesures AFM et SAXS réalisées à haute température sur des échantillons de PET/PEI semi-cristallins.
Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished
Cooke, Richard Hunter III. "THE ENHANCEMENT OF PEROXIDE-CURED FLUOROELASTOMER RUBBER TO METAL BONDING". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1377022145.
Texto completo da fonteYang, Lianyun. "Novel Ferroelectric Behavior in Poly(vinylidene fluoride-co-trifluoroethylene)-Based Random Copolymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1431686125.
Texto completo da fonteLivros sobre o assunto "Polymers"
Powell, Peter C. Engineering with polymers. 2a ed. Cheltenham: Stanley Thornes, 1998.
Encontre o texto completo da fonteGodovsky, Yu K., K. Horie, A. Kaneda, N. Kinjo, L. F. Kosyanchuk, Yu S. Lipatov, T. E. Lipatova et al. Speciality Polymers/Polymer Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0017962.
Texto completo da fonteAkelah, A. Functionalized polymers and their applications. London: Chapman and Hall, 1990.
Encontre o texto completo da fonteRubinson, Judith F., e Harry B. Mark, eds. Conducting Polymers and Polymer Electrolytes. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0832.
Texto completo da fonteChiellini, Emo, Junzo Sunamoto, Claudio Migliaresi, Raphael M. Ottenbrite e Daniel Cohn, eds. Biomedical Polymers and Polymer Therapeutics. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b112950.
Texto completo da fonteI, Kroschwitz Jacqueline, ed. Polymers: Polymer characterization and analysis. New York: Wiley, 1990.
Encontre o texto completo da fonteEmo, Chiellini, e International Symposium on Frontiers in Biomedical Polymers including Polymer Therapeutics: From Laboratory to Clinical Practice (3rd : 1999 : Shiga, Japan), eds. Biomedical polymers and polymer therapeutics. New York: Kluwer Academic/Plenum Publishers, 2001.
Encontre o texto completo da fonteDonald, A. M. Liquid crystalline polymers. Cambridge [England]: Cambridge University Press, 1992.
Encontre o texto completo da fonteEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L e Ivanov V. B, eds. Aging of polymers, polymer blends and polymer composites. New York: Nova Science Publishers, 2002.
Encontre o texto completo da fonteEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L e Ivanov V. B, eds. Aging of polymers, polymer blends, and polymer composites. New York: Nova Science Publishers, 2002.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Polymers"
Xanthos, Marino. "Polymers and Polymer Composites". In Functional Fillers for Plastics, 1–16. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605096.ch1.
Texto completo da fonteXanthos, Marino. "Polymers and Polymer Composites". In Functional Fillers for Plastics, 1–18. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629848.ch1.
Texto completo da fonteVoisey, K. T. "Polymers and Polymer Composites". In The Engineer’s Guide to Materials, 97–124. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62937-2_6.
Texto completo da fonteCzarnecki, Lech, Dionys Van Gemert, Ru Wang e Mahmoud Reda Taha. "Searching for a New C-PC Development Paradigm". In Springer Proceedings in Materials, 3–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72955-3_1.
Texto completo da fonteParisi, Ortensia Ilaria, Manuela Curcio e Francesco Puoci. "Polymer Chemistry and Synthetic Polymers". In Advanced Polymers in Medicine, 1–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12478-0_1.
Texto completo da fonteBhatia, Saurabh. "Natural Polymers vs Synthetic Polymer". In Natural Polymer Drug Delivery Systems, 95–118. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41129-3_3.
Texto completo da fonteBrandrup, Johannes, e Wiesbaden. "Polymers, Polymer Recycling, and Sustainability". In Plastics and the Environment, 521–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch13.
Texto completo da fonteWalton, David J., e J. Phillip Lorimer. "General principles and historical aspects". In Polymers. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198503897.003.0001.
Texto completo da fonteHan, Chang Dae. "Rheology of Particulate-Filled Polymers, Nanocomposites, and Fiber-Reinforced Thermoplastic Composites". In Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0018.
Texto completo da fonteHan, Chang Dae. "Relationships Between Polymer Rheology and Polymer Processing". In Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0005.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Polymers"
Kim, Bumjoon J. "Design of electroactive polymers for intrinsically-stretchable polymer solar cells". In Organic, Hybrid, and Perovskite Photovoltaics XXV, editado por Gang Li e Natalie Stingelin, 41. SPIE, 2024. http://dx.doi.org/10.1117/12.3029279.
Texto completo da fonteLiu, Y. S., H. S. Cole e H. R. Philipp. "Interactions of excimer lasers with polymers". In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.fb2.
Texto completo da fonteZhang, Yadong, Liming Wang, Tatsuo Wada e Hiroyuki Sasabe. "Carbazole Main-Chain Polymers with Di-Acceptor-Substituents for Nonlinear Optics". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.8.
Texto completo da fonteInganas, Olle, Soumyadeb Ghosh, Emil J. Samuelsen, Knut E. Aasmundtveit, Leif A. A. Pettersson e Tomas Johansson. "Model polymers for polymer actuators". In 1999 Symposium on Smart Structures and Materials, editado por Yoseph Bar-Cohen. SPIE, 1999. http://dx.doi.org/10.1117/12.349712.
Texto completo da fonteBurland, D. M., R. G. Devoe, M. C. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest e W. Volksen. "Incorporation of Thermally Stable Nonlinear Optical Polymers into Electrooptic Devices". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wa.3.
Texto completo da fonteKippelen, B., K. Meerholz, B. L. Volodin, Sandalphon e N. Peyghambarian. "High Efficiency Photorefractive Polymers". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wgg.2.
Texto completo da fonteLevenson, R., J. Liang, C. Rossier, M. Van Beylen, C. Samyn, F. Foll, Rousseau e J. Zyss. "Stability-Efficiency Trade-Off in Non-Linear Optical Polymers". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.6.
Texto completo da fonteWagner, Eva, Kathryn Uhrich e Thomas Twardowski. "Processing Considerations for Salicylic Acid-Based Polymers". In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55130.
Texto completo da fonteChe, H., P. Vo e S. Yue. "Metallization of Various Polymers by Cold Spray". In ITSC2017, editado por A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen e C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0098.
Texto completo da fonteMöhlmann, G. R., W. H. G. Horsthuis, M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach e N. McFadyen. "Optically Nonlinear Polymers in Guided Wave Electro-Optic Devices". In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.fb4.
Texto completo da fonteRelatórios de organizações sobre o assunto "Polymers"
Stavland, Arne, Siv Marie Åsen, Arild Lohne, Olav Aursjø e Aksel Hiorth. Recommended polymer workflow: Lab (cm and m scale). University of Stavanger, novembro de 2021. http://dx.doi.org/10.31265/usps.201.
Texto completo da fonteLambeth, Robert H., Randy A. Mrozek, Joseph L. Lenhart, Yelena R. Sliozberg e Jan W. Andzelm. Branched Polymers for Enhancing Polymer Gel Strength and Toughness. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2013. http://dx.doi.org/10.21236/ada577092.
Texto completo da fonteBohnert, G. W. Conductive Polymers. Office of Scientific and Technical Information (OSTI), novembro de 2002. http://dx.doi.org/10.2172/804936.
Texto completo da fonteSalovey, Ronald, e John J. Aklonis. The Behavior of Polymers Filled with Monodisperse Polymeric Beads. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1991. http://dx.doi.org/10.21236/ada242732.
Texto completo da fontePang, Yi. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties. Office of Scientific and Technical Information (OSTI), outubro de 1991. http://dx.doi.org/10.2172/5097635.
Texto completo da fonteRussell, Thomas P. Interfacial Behavior of Polymers: Using Interfaces to Manipulate Polymers. Office of Scientific and Technical Information (OSTI), fevereiro de 2015. http://dx.doi.org/10.2172/1171152.
Texto completo da fonteLotufo, Guilherme, Mandy Michalsen, Danny Reible, Philip Gschwend, Upal Ghosh, Alan Kennedy, Kristen Kerns et al. Interlaboratory study of polyethylene and polydimethylsiloxane polymeric samplers for ex situ measurement of freely dissolved hydrophobic organic compounds in sediment porewater. Engineer Research and Development Center (U.S.), maio de 2024. http://dx.doi.org/10.21079/11681/48512.
Texto completo da fonteKempel, Leo, e Shanker Balasubramaniam. RF Polymers II. Fort Belvoir, VA: Defense Technical Information Center, março de 2009. http://dx.doi.org/10.21236/ada495291.
Texto completo da fontePhillips, Shawn H., Timothy S. Haddad, Rusty L. Blanski, Andre Y. Lee e Richard A. Vaia. Molecularly Reinforced Polymers. Fort Belvoir, VA: Defense Technical Information Center, junho de 2001. http://dx.doi.org/10.21236/ada409917.
Texto completo da fonteGordon, III, Runt Bernard, Painter James P. e Paul C. New Conducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, junho de 1988. http://dx.doi.org/10.21236/ada197009.
Texto completo da fonte