Artigos de revistas sobre o tema "Polyamide 11 (PA11)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Polyamide 11 (PA11)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Bahrami, Mohsen, Juana Abenojar e Miguel Angel Martínez. "Comparative Characterization of Hot-Pressed Polyamide 11 and 12: Mechanical, Thermal and Durability Properties". Polymers 13, n.º 20 (15 de outubro de 2021): 3553. http://dx.doi.org/10.3390/polym13203553.
Texto completo da fonteLao, S. C., J. H. Koo, T. J. Moon, M. Londa, C. C. Ibeh, G. E. Wissler e L. A. Pilato. "Flame-retardant polyamide 11 nanocomposites: further thermal and flammability studies". Journal of Fire Sciences 29, n.º 6 (22 de junho de 2011): 479–98. http://dx.doi.org/10.1177/0734904111404658.
Texto completo da fonteKhan, Zahid Iqbal, Zurina Binti Mohamad, Abdul Razak Bin Rahmat, Unsia Habib e Nur Amira Sahirah Binti Abdullah. "A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend". Progress in Rubber, Plastics and Recycling Technology 37, n.º 3 (15 de março de 2021): 233–44. http://dx.doi.org/10.1177/14777606211001074.
Texto completo da fonteWang, Sheng Qin, Mohit Sharma e Yew Wei Leong. "Polyamide 11/Clay Nanocomposite Using Polyhedral Oligomeric Silsesquioxane Surfactants". Advanced Materials Research 1110 (junho de 2015): 65–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1110.65.
Texto completo da fonteLods, Louise, Tutea Richmond, Jany Dandurand, Eric Dantras, Colette Lacabanne, Jean-Michel Durand, Edouard Sherwood, Gilles Hochstetter e Philippe Ponteins. "Continuous Bamboo Fibers/Fire-Retardant Polyamide 11: Dynamic Mechanical Behavior of the Biobased Composite". Polymers 14, n.º 2 (12 de janeiro de 2022): 299. http://dx.doi.org/10.3390/polym14020299.
Texto completo da fonteGunputh, Urvashi F., Gavin Williams, Marzena Pawlik, Yiling Lu e Paul Wood. "Effect of Powder Bed Fusion Laser Sintering on Dimensional Accuracy and Tensile Properties of Reused Polyamide 11". Polymers 15, n.º 23 (2 de dezembro de 2023): 4602. http://dx.doi.org/10.3390/polym15234602.
Texto completo da fonteOulmou, F., A. Benhamida, A. Dorigato, A. Sola, M. Messori e A. Pegoretti. "Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11". Journal of Elastomers & Plastics 51, n.º 2 (18 de junho de 2018): 175–90. http://dx.doi.org/10.1177/0095244318781956.
Texto completo da fonteLi, Yongjin, Yuko Iwakura e Hiroshi Shimizu. "Crystal Form and Phase Structure of Poly(vinylidene fluoride)/Polyamide 11/Clay Nanocomposites by High-Shear Processing". Journal of Nanoscience and Nanotechnology 8, n.º 4 (1 de abril de 2008): 1714–20. http://dx.doi.org/10.1166/jnn.2008.18235.
Texto completo da fonteSahnoune, Mohamed, Mustapha Kaci, Aurélie Taguet, Karl Delbé, Samir Mouffok, Said Abdi, José-Marie Lopez-Cuesta e Walter W. Focke. "Tribological and mechanical properties of polyamide-11/halloysite nanotube nanocomposites". Journal of Polymer Engineering 39, n.º 1 (19 de dezembro de 2018): 25–34. http://dx.doi.org/10.1515/polyeng-2018-0131.
Texto completo da fonteTey, Wei Shian, Chao Cai e Kun Zhou. "A Comprehensive Investigation on 3D Printing of Polyamide 11 and Thermoplastic Polyurethane via Multi Jet Fusion". Polymers 13, n.º 13 (29 de junho de 2021): 2139. http://dx.doi.org/10.3390/polym13132139.
Texto completo da fonteSergi, Claudia, Libera Vitiello, Pietro Russo, Jacopo Tirillò e Fabrizio Sarasini. "Toughened Bio-Polyamide 11 for Impact-Resistant Intraply Basalt/Flax Hybrid Composites". Macromol 2, n.º 2 (6 de abril de 2022): 154–67. http://dx.doi.org/10.3390/macromol2020010.
Texto completo da fonteZhu, Feichao, Bin Yu, Juanjuan Su e Jian Han. "Study on PLA/PA11 Bio-Based Toughening Melt-Blown Nonwovens". Autex Research Journal 20, n.º 1 (1 de março de 2020): 24–31. http://dx.doi.org/10.2478/aut-2019-0002.
Texto completo da fonteDo, Van Cong, Vu Giang Nguyen, Huu Trung Tran, Quang Tham Do, Thi Thai Nguyen, Van Tien Mai e Thi Huong Nguyen. "Novel research on polyamide 11 nanocomposites reinforced by Titania nanoparticle deposited jute fibres". Vietnam Journal of Science and Technology 60, n.º 6 (30 de dezembro de 2022): 1032–43. http://dx.doi.org/10.15625/2525-2518/16554.
Texto completo da fonteHongsriphan, Nattakarn, Kantika Somboon, Chutikan Paujai e Thitichaya Taengto. "Mechanical Enhancement and Thermal Stability of Composites between Polyamide 11 and Functionalized Graphene Nanoplatelets". Key Engineering Materials 858 (agosto de 2020): 59–65. http://dx.doi.org/10.4028/www.scientific.net/kem.858.59.
Texto completo da fontePanaitescu, Denis Mihaela, Raluca Augusta Gabor, Adriana Nicoleta Frone e Eugeniu Vasile. "Influence of Thermal Treatment on Mechanical and Morphological Characteristics of Polyamide 11/Cellulose Nanofiber Nanocomposites". Journal of Nanomaterials 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/136204.
Texto completo da fonteFazli, Ali, e Denis Rodrigue. "Biosourced Poly(lactic acid)/polyamide-11 Blends: Effect of an Elastomer on the Morphology and Mechanical Properties". Molecules 27, n.º 20 (12 de outubro de 2022): 6819. http://dx.doi.org/10.3390/molecules27206819.
Texto completo da fonteIz, Muhammet, Jinhyok Lee, Myungchan Choi, Yumi Yun e Jongwoo Bae. "The Effect of Polyamide 11 on the Thermal Stability and Light Transmittance of Silicone-Based Thermoplastic Vulcanizates". Polymers 16, n.º 3 (24 de janeiro de 2024): 324. http://dx.doi.org/10.3390/polym16030324.
Texto completo da fonteJeziorska, Regina, Agnieszka Szadkowska e Maciej Studzinski. "Morphology and Properties of Poly(2,6-dimethyl-1,4-phenylene oxide)/Polyamide 11 Hybrid Nanocomposites: Effect of Silica Surface Modification". Materials 15, n.º 10 (10 de maio de 2022): 3421. http://dx.doi.org/10.3390/ma15103421.
Texto completo da fontePeng, Cun, Hua Yang e Wufei Tang. "Study on the Flammability, Crystal Behaviors and Mechanical Performance of Polyamide 11 Composites by Intercalated Layered Double Hydroxides". International Journal of Molecular Sciences 23, n.º 21 (24 de outubro de 2022): 12818. http://dx.doi.org/10.3390/ijms232112818.
Texto completo da fonteLebaupin, Yann, Michaël Chauvin, Thuy-Quynh Truong Hoang, Fabienne Touchard e Alexandre Beigbeder. "Influence of constituents and process parameters on mechanical properties of flax fibre-reinforced polyamide 11 composite". Journal of Thermoplastic Composite Materials 30, n.º 11 (21 de abril de 2016): 1503–21. http://dx.doi.org/10.1177/0892705716644669.
Texto completo da fonteZhu, Feichao, Juanjuan Su, Mingjun Wang, Munir Hussain, Bin Yu e Jian Han. "Study on dual-monomer melt-grafted poly(lactic acid) compatibilized poly(lactic acid)/polyamide 11 blends and toughened melt-blown nonwovens". Journal of Industrial Textiles 49, n.º 6 (31 de agosto de 2018): 748–72. http://dx.doi.org/10.1177/1528083718795913.
Texto completo da fonteDintcheva, N. Tz, G. Filippone, R. Arrigo e F. P. La Mantia. "Low-Density Polyethylene/Polyamide/Clay Blend Nanocomposites: Effect of Morphology of Clay on Their Photooxidation Resistance". Journal of Nanomaterials 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/3549475.
Texto completo da fonteLi, Rui, Bin Xue e Jianzhong Pei. "Enhancement of the dielectric performance of PA11/PVDF blends by a solution method with dimethyl sulfoxide". e-Polymers 15, n.º 6 (1 de novembro de 2015): 439–45. http://dx.doi.org/10.1515/epoly-2015-0131.
Texto completo da fonteHuynh, Mai Duc. "PREPARATION OF POLYAMIDE11/BAMBOO FLOUR POLYMER COMPOSITE USING POLYVINYL ALCOHOL AS COMPATIBILIZER". Vietnam Journal of Science and Technology 56, n.º 2A (21 de junho de 2018): 209–16. http://dx.doi.org/10.15625/2525-2518/56/2a/12688.
Texto completo da fontePuglisi, Roberta, Andrea Antonino Scamporrino, Nadka Tzankova Dintcheva, Giovanni Filippone, Elena Bruno, Paola Scarfato, Pierfrancesco Cerruti e Sabrina Carola Carroccio. "Photo- and Water-Degradation Phenomena of ZnO Bio-Blend Based on Poly(lactic acid) and Polyamide 11". Polymers 15, n.º 6 (14 de março de 2023): 1434. http://dx.doi.org/10.3390/polym15061434.
Texto completo da fonteMandlekar, Neeraj, Aurélie Cayla, François Rault, Stéphane Giraud, Fabien Salaün e Jinping Guan. "Valorization of Industrial Lignin as Biobased Carbon Source in Fire Retardant System for Polyamide 11 Blends". Polymers 11, n.º 1 (21 de janeiro de 2019): 180. http://dx.doi.org/10.3390/polym11010180.
Texto completo da fonteJaouadi, Nour, Mohamed Jaziri, Abderrahim Maazouz e Khalid Lamnawar. "Biosourced Multiphase Systems Based on Poly(Lactic Acid) and Polyamide 11 from Blends to Multi-Micro/Nanolayer Polymers Fabricated with Forced-Assembly Multilayer Coextrusion". International Journal of Molecular Sciences 24, n.º 23 (24 de novembro de 2023): 16737. http://dx.doi.org/10.3390/ijms242316737.
Texto completo da fonteDobrosielska, Marta, Renata Dobrucka, Paulina Kozera, Rafał Kozera, Marta Kołodziejczak, Ewa Gabriel, Julia Głowacka, Marek Jałbrzykowski, Krzysztof J. Kurzydłowski e Robert E. Przekop. "Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules". Polymers 14, n.º 15 (2 de agosto de 2022): 3153. http://dx.doi.org/10.3390/polym14153153.
Texto completo da fonteDobrosielska, Marta, Renata Dobrucka, Dariusz Brząkalski, Paulina Kozera, Agnieszka Martyła, Ewa Gabriel, Krzysztof J. Kurzydłowski e Robert E. Przekop. "Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Properties". Polymers 15, n.º 6 (21 de março de 2023): 1563. http://dx.doi.org/10.3390/polym15061563.
Texto completo da fonteRasselet, Damien, Anne-Sophie Caro-Bretelle, Aurélie Taguet e José-Marie Lopez-Cuesta. "Reactive Compatibilization of PLA/PA11 Blends and Their Application in Additive Manufacturing". Materials 12, n.º 3 (5 de fevereiro de 2019): 485. http://dx.doi.org/10.3390/ma12030485.
Texto completo da fonteZheng, Xiaofang, Yongzhong Huang, Shaodi Zheng, Zhengying Liu e Mingbo Yang. "Improved dielectric properties of polymer-based composites with carboxylic functionalized multiwalled carbon nanotubes". Journal of Thermoplastic Composite Materials 32, n.º 4 (12 de março de 2018): 473–86. http://dx.doi.org/10.1177/0892705718762614.
Texto completo da fonteSillani, Francesco, Ramis Schiegg, Manfred Schmid, Eric MacDonald e Konrad Wegener. "Powder Surface Roughness as Proxy for Bed Density in Powder Bed Fusion of Polymers". Polymers 14, n.º 1 (26 de dezembro de 2021): 81. http://dx.doi.org/10.3390/polym14010081.
Texto completo da fonteMorici, Elisabetta, Giulia Infurna e Nadka Tz Dintcheva. "Ecofriendly Biopolymer-Based Nanocomposite Films with Improved Photo-Oxidative Resistance". Materials 15, n.º 16 (21 de agosto de 2022): 5778. http://dx.doi.org/10.3390/ma15165778.
Texto completo da fonteFernández-Álvarez, Maria, Francisco Velasco, Asuncion Bautista, Flavia Cristina M. Lobo, Emanuel M. Fernandes e Rui L. Reis. "Manufacturing and Characterization of Coatings from Polyamide Powders Functionalized with Nanosilica". Polymers 12, n.º 10 (8 de outubro de 2020): 2298. http://dx.doi.org/10.3390/polym12102298.
Texto completo da fonteDong, Chufeng, Yitao Liu, Jiepu Li, Guangfu Bin, Chilou Zhou, Wulin Han e Xiang Li. "Hydrogen Permeability of Polyamide 6 Used as Liner Material for Type IV On-Board Hydrogen Storage Cylinders". Polymers 15, n.º 18 (10 de setembro de 2023): 3715. http://dx.doi.org/10.3390/polym15183715.
Texto completo da fonteUssia, Martina, Giusy Curcuruto, Daniela Zampino, Nadka Tzankova Dintcheva, Giovanni Filippone, Raniero Mendichi e Sabrina Carola Carroccio. "Role of Organo-Modifier and Metal Impurities of Commercial Nanoclays in the Photo- and Thermo-Oxidation of Polyamide 11 Nanocomposites". Polymers 12, n.º 5 (2 de maio de 2020): 1034. http://dx.doi.org/10.3390/polym12051034.
Texto completo da fonteMorici, Elisabetta, Giuseppe Pecoraro, Sabrina Carola Carroccio, Elena Bruno, Paola Scarfato, Giovanni Filippone e Nadka Tz Dintcheva. "Understanding the Effects of Adding Metal Oxides to Polylactic Acid and Polylactic Acid Blends on Mechanical and Rheological Behaviour, Wettability, and Photo-Oxidation Resistance". Polymers 16, n.º 7 (27 de março de 2024): 922. http://dx.doi.org/10.3390/polym16070922.
Texto completo da fonteMandlekar, Neeraj, Aurélie Cayla, François Rault, Stéphane Giraud, Fabien Salaün e Jinping Guan. "Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants". Molecules 25, n.º 21 (27 de outubro de 2020): 4963. http://dx.doi.org/10.3390/molecules25214963.
Texto completo da fonteKhan, Z. I., U. Habib, Z. B. Mohamad e A. M. Raji. "Enhanced mechanical properties of a novel compatibilized recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) blends". Express Polymer Letters 15, n.º 12 (2021): 1206–15. http://dx.doi.org/10.3144/expresspolymlett.2021.96.
Texto completo da fonteSergi, Claudia, Libera Vitiello, Patrick Dang, Pietro Russo, Jacopo Tirillò e Fabrizio Sarasini. "Low Molecular Weight Bio-Polyamide 11 Composites Reinforced with Flax and Intraply Flax/Basalt Hybrid Fabrics for Eco-Friendlier Transportation Components". Polymers 14, n.º 22 (21 de novembro de 2022): 5053. http://dx.doi.org/10.3390/polym14225053.
Texto completo da fonteRusso, Pietro, Giorgio Simeoli, Libera Vitiello e Giovanni Filippone. "Bio-Polyamide 11 Hybrid Composites Reinforced with Basalt/Flax Interwoven Fibers: A Tough Green Composite for Semi-Structural Applications". Fibers 7, n.º 5 (6 de maio de 2019): 41. http://dx.doi.org/10.3390/fib7050041.
Texto completo da fonteWu, Hao, Rogelio Ortiz e Joseph H. Koo. "Rubber toughened flame retardant (FR) polyamide 11 nanocomposites Part 1: the effect of SEBS-g-MA elastomer and nanoclay". Flame Retardancy and Thermal Stability of Materials 1, n.º 1 (25 de julho de 2018): 25–38. http://dx.doi.org/10.1515/flret-2018-0003.
Texto completo da fonteYu, Muhuo, Liangliang Qi, Lele Cheng, Wei Min, Zhonghao Mei, Ruize Gao e Zeyu Sun. "The Effect of Cooling Rates on Thermal, Crystallization, Mechanical and Barrier Properties of Rotational Molding Polyamide 11 as the Liner Material for High-Capacity High-Pressure Vessels". Molecules 28, n.º 6 (7 de março de 2023): 2425. http://dx.doi.org/10.3390/molecules28062425.
Texto completo da fonteBaron, Marc, Mamy-Daniel Rakotorinina, Mohamed Ihab El Assil, Yohann Guillaneuf, Didier Gigmes, Didier Siri, Anouk Gaudel-Siri et al. "Melt radical grafting of diethylmaleate and maleic anhydride onto oligoamide-11 (OA11) and polyamide-11 (PA11) in presence of acyloxyimide derivatives: Toward the compatibilization of PA11/EVOH blends". Materials Today Communications 19 (junho de 2019): 271–76. http://dx.doi.org/10.1016/j.mtcomm.2019.02.003.
Texto completo da fonteSharma, Mohit, Sheng Qin Wang e Yew Wei Leong. "Wear Resistance Properties of Nylon-SiC Hybrids Composites". Advanced Materials Research 1110 (junho de 2015): 88–91. http://dx.doi.org/10.4028/www.scientific.net/amr.1110.88.
Texto completo da fonteDzienniak, Damian. "The Influence of the Material Type and the Placement in the Print Chamber on the Roughness of MJF-Printed 3D Objects". Machines 10, n.º 1 (9 de janeiro de 2022): 49. http://dx.doi.org/10.3390/machines10010049.
Texto completo da fonteTonello, Riccardo, Knut Conradsen, David Bue Pedersen e Jeppe Revall Frisvad. "Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering". Polymers 15, n.º 13 (6 de julho de 2023): 2967. http://dx.doi.org/10.3390/polym15132967.
Texto completo da fonteVande Ryse, Ruben, Michiel Van Osta, Mounia Gruyaert, Maarten Oosterlinck, Ádám Kalácska, Mariya Edeleva, Frederik Pille, Dagmar R. D’hooge, Ludwig Cardon e Patrick De Baets. "Playing with Low Amounts of Expanded Graphite for Melt-Processed Polyamide and Copolyester Nanocomposites to Achieve Control of Mechanical, Tribological, Thermal and Dielectric Properties". Nanomaterials 14, n.º 7 (29 de março de 2024): 606. http://dx.doi.org/10.3390/nano14070606.
Texto completo da fonteBarczewski, Mateusz, Aleksander Hejna, Jacek Andrzejewski, Joanna Aniśko, Adam Piasecki, Adrian Mróz, Zaida Ortega, Daria Rutkowska e Kamila Sałasińska. "The Recyclability of Fire-Retarded Biobased Polyamide 11 (PA11) Composites Reinforced with Basalt Fibers (BFs): The Influence of Reprocessing on Structure, Properties, and Fire Behavior". Molecules 29, n.º 13 (8 de julho de 2024): 3233. http://dx.doi.org/10.3390/molecules29133233.
Texto completo da fonteWu, Hao, Rogelio Ortiz e Joseph H. Koo. "Rubber toughened flame retardant (FR) polyamide 11 nanocomposites Part 2: synergy between multi-walled carbon nanotube (MWNT) and MMT nanoclay". Flame Retardancy and Thermal Stability of Materials 2, n.º 1 (1 de janeiro de 2019): 19–29. http://dx.doi.org/10.1515/flret-2019-0003.
Texto completo da fonte