Literatura científica selecionada sobre o tema "Poisson distribution"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Poisson distribution".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Poisson distribution"
Loukas, Sotirios, e H. Papageorgiou. "On a trivariate Poisson distribution". Applications of Mathematics 36, n.º 6 (1991): 432–39. http://dx.doi.org/10.21136/am.1991.104480.
Texto completo da fonteSHANKER, Rama. "The Discrete Poisson-Aradhana Distribution". Turkiye Klinikleri Journal of Biostatistics 9, n.º 1 (2017): 12–22. http://dx.doi.org/10.5336/biostatic.2017-54834.
Texto completo da fonteV. R., Saji Kumar. "α - Poisson Distribution". Calcutta Statistical Association Bulletin 54, n.º 3-4 (setembro de 2003): 275–80. http://dx.doi.org/10.1177/0008068320030312.
Texto completo da fonteBidounga, R., P. C. Batsindila Nganga, L. Niéré e D. Mizère. "A Note on the (Weighted) Bivariate Poisson Distribution". European Journal of Pure and Applied Mathematics 14, n.º 1 (31 de janeiro de 2021): 192–203. http://dx.doi.org/10.29020/nybg.ejpam.v14i1.3895.
Texto completo da fonteAbd El-Monsef, Mohamed, e Nora Sohsah. "POISSON TRANSMUTED LINDLEY DISTRIBUTION". JOURNAL OF ADVANCES IN MATHEMATICS 11, n.º 9 (1 de janeiro de 2016): 5631–38. http://dx.doi.org/10.24297/jam.v11i9.816.
Texto completo da fonteDeshmukh, S. R., e M. S. Kasture. "BIVARIATE DISTRIBUTION WITH TRUNCATED POISSON MARGINAL DISTRIBUTIONS". Communications in Statistics - Theory and Methods 31, n.º 4 (14 de maio de 2002): 527–34. http://dx.doi.org/10.1081/sta-120003132.
Texto completo da fonteARRATIA, RICHARD, A. D. BARBOUR e SIMON TAVARÉ. "The Poisson–Dirichlet Distribution and the Scale-Invariant Poisson Process". Combinatorics, Probability and Computing 8, n.º 5 (setembro de 1999): 407–16. http://dx.doi.org/10.1017/s0963548399003910.
Texto completo da fonteGao, Mingchu. "Compound bi-free Poisson distributions". Infinite Dimensional Analysis, Quantum Probability and Related Topics 22, n.º 02 (junho de 2019): 1950014. http://dx.doi.org/10.1142/s0219025719500140.
Texto completo da fonteRufin, Bidounda, Michel Koukouatikissa Diafouka, R. Ìeolie Foxie Miz Ìel Ìe Kitoti e Dominique Miz`ere. "The Bivariate Extended Poisson Distribution of Type 1". European Journal of Pure and Applied Mathematics 14, n.º 4 (10 de novembro de 2021): 1517–29. http://dx.doi.org/10.29020/nybg.ejpam.v14i4.4151.
Texto completo da fonteThavaneswaran, Aerambamoorthy, Saumen Mandal e Dharini Pathmanathan. "Estimation for Wrapped Zero Inflated Poisson and Wrapped Poisson Distributions". International Journal of Statistics and Probability 5, n.º 3 (8 de abril de 2016): 1. http://dx.doi.org/10.5539/ijsp.v5n3p1.
Texto completo da fonteTeses / dissertações sobre o assunto "Poisson distribution"
Gu, Kangxia. "Testing the rates of Poisson distribution". Ann Arbor, Mich. : ProQuest, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3213456.
Texto completo da fonteTitle from PDF title page (viewed July 6, 2007). Source: Dissertation Abstracts International, Volume: 67-03, Section: B, page: 1504. Advisers: Hon Keung Tony Ng; William R. Schucany. Includes bibliographical references.
Wang, Ling. "Homogeneity tests for several poisson populations". HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/909.
Texto completo da fonteSILVA, PRISCILLA FERREIRA DA. "A BIVARIATE GARMA MODEL WITH CONDITIONAL POISSON DISTRIBUTION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=22899@1.
Texto completo da fonteCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Os modelos lineares generalizados auto regressivos com médias móveis (do inglês GARMA), possibilitam a modelagem de séries temporais de dados de contagem com estrutura de correlação similares aos dos modelos ARMA. Neste trabalho é desenvolvida uma extensão multivariada do modelo GARMA, considerando a especificação de um modelo Poisson bivariado a partir da distribuição de Kocherlakota e Kocherlakota (1992), a qual será denominada de modelo Poisson BGARMA. O modelo proposto é adequado para séries de contagens estacionárias, sendo possível, através de funções de ligação apropriadas, introduzir deterministicamente o efeito de sazonalidade e de tendência. A investigação das propriedades usuais dos estimadores de máxima verossimilhança (viés, eficiência e distribuição) foi realizada através de simulações de Monte Carlo. Com o objetivo de comparar o desempenho e a aderência do modelo proposto, este foi aplicado a dois pares de séries reais bivariadas de dados de contagem. O primeiro par de séries apresenta as contagens mensais de óbitos neonatais para duas faixas de dias de vida. O segundo par de séries refere-se a contagens de acidentes de automóveis diários em dois períodos: vespertino e noturno. Os resultados do modelo proposto, quando comparados com aqueles obtidos através do ajuste de um modelo Gaussiano bivariado Vector Autoregressive (VAR), indicam que o modelo Poisson BGARMA é capaz de capturar de forma adequada as variações de pares de séries de dados de contagem e de realizar previsões com erros aceitáveis, além de produzir previsões probabilísticas para as séries.
Generalized autoregressive linear models with moving average (GARMA) allow the modeling of discrete time series with correlation structure similar to those of ARMA’s models. In this work we developed an extension of a univariate Poisson GARMA model by considerating the specification of a bivariate Poisson model through the distribution presented on Kocherlakota and Kocherlakota (1992), which will be called Poisson BGARMA model. The proposed model not only is suitable for stationary discrete series, but also allows us to take into consideration the effect of seasonality and trend. The investigation of the usual properties of the maximum likelihood estimators (bias, efficiency and distribution) was performed using Monte Carlo simulations. Aiming to compare the performance and compliance of the proposed model, it was applied to two pairs of series of bivariate count data. The first pair is the monthly counts of neonatal deaths to two lanes of days. The second pair refers to counts of daily car accidents in two distinct periods: afternoon and evening. The results of our model when compared with those obtained by fitting a bivariate Vector Autoregressive Gaussian model (VAR) indicates that the Poisson BGARMA model is able to proper capture the variability of bivariate vectors of real time series of count data, producing forecasts with acceptable errors and allowing one to obtain probability forecasts.
Wan, Wai-yin. "Analysis of Poisson count data using Geometric Process model". Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37836493.
Texto completo da fonteWan, Wai-yin, e 溫慧妍. "Analysis of Poisson count data using Geometric Process model". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37836493.
Texto completo da fonteBuchmann, Boris. "Decompounding an estimation problem for the compound poisson distribution /". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962736910.
Texto completo da fontevan, de Ven Remy Julius. "Estimation in mixed Poisson regression models". Thesis, The University of Sydney, 1996. https://hdl.handle.net/2123/26822.
Texto completo da fontePfister, Mark. "Distribution of a Sum of Random Variables when the Sample Size is a Poisson Distribution". Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3459.
Texto completo da fonteRodrigues, Cristiane. "Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/.
Texto completo da fonteIn this paper, some result such as moments generating function, recurrence relations for moments and some theorems of the class of modified power series distributions (MPSD) proposed by Gupta (1974) and of the class of inflated modified power series distributions (IMPSD) both at a different point of zero as the zero point are presented. The standard Poisson model, the standard negative binomial model and zero inflated models for count data, ZIP and ZINB, using the techniques of the GLMs, were used to analyse two real data sets together with the normal plot with simulated envelopes. The new distribution Weibull negative binomial (WNB) was proposed. Some mathematical properties of the WNB distribution which is quite flexible in analyzing positive data were studied. It is an important alternative model to the Weibull, and Weibull geometric distributions as they are sub-models of WNB. We demonstrate that the WNB density can be expressed as a mixture of Weibull densities. We provide their moments, moment generating function, plots of the skewness and kurtosis, explicit expressions for the mean deviations, Bonferroni and Lorenz curves, quantile function, reliability and entropy, the density of order statistics and explicit expressions for the moments of order statistics. The method of maximum likelihood is used for estimating the model parameters. The expected information matrix is derived. The usefulness of the new distribution is illustrated in two analysis of real data sets.
Gagnon, Karine. "Distribution et abondance des larves d'éperlan arc-en-ciel (Osmerus mordax) au lac Saint-Jean /". Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2005. http://theses.uqac.ca.
Texto completo da fonteLivros sobre o assunto "Poisson distribution"
Barbour, A. D. Poisson approximation. Oxford [England]: Clarendon Press, 1992.
Encontre o texto completo da fonteGrandell, Jan. Mixed Poisson processes. London: Chapman & Hall, 1997.
Encontre o texto completo da fonteLindsay, Glenn F. Recruiter productivity and the Poisson distribution. Monterey, Calif: Naval Postgraduate School, 1994.
Encontre o texto completo da fonteGeneralized Poisson distributions: Properties and applications. New York: M. Dekker, 1989.
Encontre o texto completo da fonteFeng, Shui. The Poisson-Dirichlet Distribution and Related Topics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11194-5.
Texto completo da fonteThe Poisson-Dirichlet distribution and related topics: Models and asymptotic behaviors. Heidelberg: Springer, 2010.
Encontre o texto completo da fonteHarris, Ian Richard. Smooth and predictive estimates for the compound Poisson distribution. Birmingham: University of Birmingham, 1987.
Encontre o texto completo da fonteMarijtje A. J. van Duijn. Mixed models for repeated count data. Leiden, Netherlands: DSWO Press, Leiden University, 1993.
Encontre o texto completo da fonteHeldt, John J. Quality sampling and reliability: New uses for the poisson distribution. Boca Raton: St. Lucie Press, 1999.
Encontre o texto completo da fonteA, Kutoyants Yu. Statistical inference for spatial Poisson processes. New York: Springer, 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Poisson distribution"
Gooch, Jan W. "Poisson Distribution". In Encyclopedic Dictionary of Polymers, 991. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15324.
Texto completo da fonteGooch, Jan W. "Poisson Distribution". In Encyclopedic Dictionary of Polymers, 546. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8909.
Texto completo da fonteWeik, Martin H. "Poisson distribution". In Computer Science and Communications Dictionary, 1293. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14247.
Texto completo da fonteGooch, Jan W. "Poisson Ratio Distribution". In Encyclopedic Dictionary of Polymers, 546. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8911.
Texto completo da fonteNguyen, Hung T., e Gerald S. Rogers. "The Poisson Distribution". In Springer Texts in Statistics, 166–76. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-1013-9_20.
Texto completo da fonteJolicoeur, Pierre. "The Poisson distribution". In Introduction to Biometry, 124–33. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4777-8_19.
Texto completo da fonteCummings, Peter. "The Poisson Distribution". In Analysis of Incidence Rates, 53–82. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429055713-4.
Texto completo da fonteRussell, Kenneth G. "The Poisson Distribution". In Design of Experiments for Generalized Linear Models, 149–69. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC interdisciplinary statistics: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429057489-5.
Texto completo da fonteGrandell, Jan. "The mixed Poisson distribution". In Mixed Poisson Processes, 13–50. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-3117-7_2.
Texto completo da fonteFeng, Shui. "The Poisson–Dirichlet Distribution". In Probability and its Applications, 15–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11194-5_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Poisson distribution"
Hubert, Paulo C., Marcelo S. Lauretto, Julio M. Stern, Paul M. Goggans e Chun-Yong Chan. "FBST for Generalized Poisson Distribution". In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: The 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2009. http://dx.doi.org/10.1063/1.3275617.
Texto completo da fonteSEETHA MAHALAXMI, D., e P. R. K. MURTI. "TAMPER RESISTANCE VIA POISSON DISTRIBUTION". In Proceedings of the 3rd Asian Applied Computing Conference. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. http://dx.doi.org/10.1142/9781860948534_0019.
Texto completo da fonteAdzkiah, A., D. Lestari e L. Safitri. "Exponential Conway Maxwell Poisson distribution". In PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059254.
Texto completo da fonteFitria, Dina, Nonong Amalita e Syafriandi. "Poisson Distribution with Discrete Parameter". In Proceedings of the 2nd International Conference on Mathematics and Mathematics Education 2018 (ICM2E 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icm2e-18.2018.11.
Texto completo da fonteÖzel, Gamze, e Selen Çakmakyapan. "A new generalized Poisson Lindley distribution". In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992404.
Texto completo da fonteŠvihlík, Jan, Zuzana Krbcová, Jaromir Kukal e Karel Fliegel. "Smoothing of astronomical images with Poisson distribution". In Applications of Digital Image Processing XL, editado por Andrew G. Tescher. SPIE, 2017. http://dx.doi.org/10.1117/12.2274121.
Texto completo da fonteZamani, Hossein, Pouya Faroughi e Noriszura Ismail. "Bivariate Poisson-weighted exponential distribution with applications". In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882600.
Texto completo da fonteZhang, Hao Lan, Jiming Liu, Tongliang Li, Yun Xue, Songjie Xu e Junhua Chen. "Extracting sample data based on poisson distribution". In 2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2017. http://dx.doi.org/10.1109/icmlc.2017.8108950.
Texto completo da fonteYuanshu Jiang e Wenzhong Tang. "Poisson distribution-based page updating prediction strategy". In 2011 International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2011. http://dx.doi.org/10.1109/iccsnt.2011.6182119.
Texto completo da fonteRamanujam, P. S., e N. Gronbech-Jensen. "Generation of sub-Poisson distribution of light". In Emerging OE Technologies, Bangalore, India, editado por Krishna Shenai, Ananth Selvarajan, C. K. N. Patel, C. N. R. Rao, B. S. Sonde e Vijai K. Tripathi. SPIE, 1992. http://dx.doi.org/10.1117/12.636808.
Texto completo da fonteRelatórios de organizações sobre o assunto "Poisson distribution"
Lindsay, Glenn F. Recruiter Productivity and the Poisson Distribution. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1994. http://dx.doi.org/10.21236/ada286230.
Texto completo da fonteBryant, J. L., e A. S. Paulson. Estimation of the Parameters of a Modified Compound Poisson Distribution. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1986. http://dx.doi.org/10.21236/ada178540.
Texto completo da fonteDeLacy, Brendan G., e Janon F. Embury. Infrared Extinction Coefficients of Aerosolized Conductive Flake Powders and Flake Suspensions having a Zero-Truncated Poisson Size Distribution. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2012. http://dx.doi.org/10.21236/ada570956.
Texto completo da fonteZacks, S., e Gang Li. The Distribution of the Size and Number of Shadows Cast on a Line Segment in a Poisson Random Field. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1991. http://dx.doi.org/10.21236/ada233697.
Texto completo da fonteVecherin, Sergey, Stephen Ketcham, Aaron Meyer, Kyle Dunn, Jacob Desmond e Michael Parker. Short-range near-surface seismic ensemble predictions and uncertainty quantification for layered medium. Engineer Research and Development Center (U.S.), setembro de 2022. http://dx.doi.org/10.21079/11681/45300.
Texto completo da fonteGuilfoyle, Michael, Ruth Beck, Bill Williams, Shannon Reinheimer, Lyle Burgoon, Samuel Jackson, Sherwin Beck, Burton Suedel e Richard Fischer. Birds of the Craney Island Dredged Material Management Area, Portsmouth, Virginia, 2008-2020. Engineer Research and Development Center (U.S.), setembro de 2022. http://dx.doi.org/10.21079/11681/45604.
Texto completo da fonteTummala, Rohan, Andrew de Jesus, Natasha Tillett, Jeffrey Nelson e Christine Lamey. Clinical and Socioeconomic Predictors of Palliative Care Utilization. University of Tennessee Health Science Center, janeiro de 2021. http://dx.doi.org/10.21007/com.lsp.2020.0006.
Texto completo da fonte