Artigos de revistas sobre o tema "Pneumonic Tularemia"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pneumonic Tularemia".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ellis, Jill, Petra C. F. Oyston, Michael Green e Richard W. Titball. "Tularemia". Clinical Microbiology Reviews 15, n.º 4 (outubro de 2002): 631–46. http://dx.doi.org/10.1128/cmr.15.4.631-646.2002.
Texto completo da fonteHORN, M., e L. ZICKUHR. "PNEUMONIC TULAREMIA: A CASE PRESENTATION". Chest 161, n.º 6 (junho de 2022): A142. http://dx.doi.org/10.1016/j.chest.2021.12.174.
Texto completo da fonteGregory, Stephen H., Stephanie Mott, Jennifer Phung, Jinhee Lee, Leonard Moise, Julie A. McMurry, William Martin e Anne S. De Groot. "Epitope-based vaccination against pneumonic tularemia". Vaccine 27, n.º 39 (agosto de 2009): 5299–306. http://dx.doi.org/10.1016/j.vaccine.2009.06.101.
Texto completo da fonteBonnier, Alyssa, Santu Saha, Adam Austin e Biplab K. Saha. "An Unusual Etiology of Fluorodeoxyglucose Avid Intrathoracic Lymph Nodes". Prague Medical Report 125, n.º 1 (2024): 79–86. http://dx.doi.org/10.14712/23362936.2024.8.
Texto completo da fonteNicol, McKayla J., David R. Williamson, David E. Place e Girish S. Kirimanjeswara. "Differential Immune Response Following Intranasal and Intradermal Infection with Francisella tularensis: Implications for Vaccine Development". Microorganisms 9, n.º 5 (30 de abril de 2021): 973. http://dx.doi.org/10.3390/microorganisms9050973.
Texto completo da fonteNelson, Christina A., Jessica Winberg, Taylor D. Bostic, K. Meryl Davis e Shannon Fleck-Derderian. "Systematic Review: Clinical Features, Antimicrobial Treatment, and Outcomes of Human Tularemia, 1993–2023". Clinical Infectious Diseases 78, Supplement_1 (31 de janeiro de 2024): S15—S28. http://dx.doi.org/10.1093/cid/ciad736.
Texto completo da fonteJacobs, Richard F., Yoland M. Condrey e Terry Yamauchi. "Tularemia in Adults and Children: A Changing Presentation". Pediatrics 76, n.º 5 (1 de novembro de 1985): 818–22. http://dx.doi.org/10.1542/peds.76.5.818.
Texto completo da fonteLovchik, Julie A., Douglas S. Reed, Julie A. Hutt, Fangfang Xia, Rick L. Stevens, Thero Modise, Eileen M. Barry e Terry H. Wu. "Identification of an Attenuated Substrain of Francisella tularensis SCHU S4 by Phenotypic and Genotypic Analyses". Pathogens 10, n.º 6 (22 de maio de 2021): 638. http://dx.doi.org/10.3390/pathogens10060638.
Texto completo da fonteWilliams, Mark S. "Efficacy of Doxycycline and Ciprofloxacin for Treatment of Pneumonic Tularemia in Cynomolgus Macaques". Clinical Infectious Diseases 78, Supplement_1 (31 de janeiro de 2024): S7—S14. http://dx.doi.org/10.1093/cid/ciad668.
Texto completo da fonteHahn, Mark M., Cheryl A. Triplett, Michael S. Anderson, Jennifer I. Smart, Karine Litherland, Stephen Keech, Franziska von Siebenthal, Mark Jones, Andrew J. Phipps e Lisa N. Henning. "Ceftobiprole Medocaril Is an Effective Post-Exposure Treatment in the Fischer 344 Rat Model of Pneumonic Tularemia". Antibiotics 12, n.º 8 (19 de agosto de 2023): 1337. http://dx.doi.org/10.3390/antibiotics12081337.
Texto completo da fonteMIR, MAHNOOR, e CHRISTOPHER DAYTON. "A CASE OF PNEUMONIC TULAREMIA MIMICKING COVID-19". Chest 160, n.º 4 (outubro de 2021): A373. http://dx.doi.org/10.1016/j.chest.2021.07.374.
Texto completo da fonteMaranan, Melinda C., Deborah Schiff, Daniel C. Johnson, Cyril Abrahams, Mark Wylam e Susan I. Gerber. "Pneumonic Tularemia in a Patient with Chronic Granulomatous Disease". Clinical Infectious Diseases 25, n.º 3 (setembro de 1997): 630–33. http://dx.doi.org/10.1086/513777.
Texto completo da fonteFeldman, Katherine A., Russell E. Enscore, Sarah L. Lathrop, Bela T. Matyas, Michael McGuill, Martin E. Schriefer, Donna Stiles-Enos, David T. Dennis, Lyle R. Petersen e Edward B. Hayes. "An Outbreak of Primary Pneumonic Tularemia on Martha's Vineyard". New England Journal of Medicine 345, n.º 22 (29 de novembro de 2001): 1601–6. http://dx.doi.org/10.1056/nejmoa011374.
Texto completo da fonteFrick, Ondraya M., Virginia A. Livingston, Chris A. Whitehouse, Sarah L. Norris, Derron A. Alves, Paul R. Facemire, Douglas S. Reed e Aysegul Nalca. "The Natural History of Aerosolized Francisella tularensis Infection in Cynomolgus Macaques". Pathogens 10, n.º 5 (13 de maio de 2021): 597. http://dx.doi.org/10.3390/pathogens10050597.
Texto completo da fontePeriasamy, Sivakumar, Timothy Sellati e Jonathan Harton. "Lung infiltrates containing myeloid-derived suppressor cells impair protective immunity in pneumonic tularemia caused by Francisella tularemia (P3082)". Journal of Immunology 190, n.º 1_Supplement (1 de maio de 2013): 187.14. http://dx.doi.org/10.4049/jimmunol.190.supp.187.14.
Texto completo da fonteCowley, Siobhán C. "Editorial: Proinflammatory cytokines in pneumonic tularemia: too much too late?" Journal of Leukocyte Biology 86, n.º 3 (setembro de 2009): 469–70. http://dx.doi.org/10.1189/jlb.0309119.
Texto completo da fonteMATYAS, B. T., H. S. NIEDER e S. R. TELFORD. "Pneumonic Tularemia on Martha's Vineyard: Clinical, Epidemiologic, and Ecological Characteristics". Annals of the New York Academy of Sciences 1105, n.º 1 (29 de março de 2007): 351–77. http://dx.doi.org/10.1196/annals.1409.013.
Texto completo da fonte&NA;. "AN OUTBREAK OF PRIMARY PNEUMONIC TULAREMIA ON MARTHA???S VINEYARD". Infectious Diseases in Clinical Practice 11, n.º 1 (janeiro de 2002): 39. http://dx.doi.org/10.1097/00019048-200201000-00019.
Texto completo da fonteReed, Douglas S., Emily Olsen, Jennifer Bowling, Katherine Willett, Karsten Hazlett e Eileen Barry. "Role of antibody in vaccine-mediated protection against pneumonic tularemia in the rabbit model". Journal of Immunology 204, n.º 1_Supplement (1 de maio de 2020): 168.12. http://dx.doi.org/10.4049/jimmunol.204.supp.168.12.
Texto completo da fonteBrunet, Camille D., Aurélie Hennebique, Julien Peyroux, Isabelle Pelloux, Yvan Caspar e Max Maurin. "Presence of Francisella tularensis subsp. holarctica DNA in the Aquatic Environment in France". Microorganisms 9, n.º 7 (28 de junho de 2021): 1398. http://dx.doi.org/10.3390/microorganisms9071398.
Texto completo da fonteMalik, Salma, Vishesh Paul, Thara Damodaran, Deepa Prabakhar, Amir Khan e Sharjeel Ahmad. "648. Rapid, Non-invasive Detection of Cryptic Tularemia Using a Plasma-Based Microbial Cell-Free DNA Next-Generation Sequencing Test". Open Forum Infectious Diseases 8, Supplement_1 (1 de novembro de 2021): S426. http://dx.doi.org/10.1093/ofid/ofab466.845.
Texto completo da fonteLembo, Annalisa, Mark Pelletier, Ravi Iyer, Michele Timko, Jan C. Dudda, T. Eoin West, Christopher B. Wilson, Adeline M. Hajjar e Shawn J. Skerrett. "Administration of a Synthetic TLR4 Agonist Protects Mice from Pneumonic Tularemia". Journal of Immunology 180, n.º 11 (19 de maio de 2008): 7574–81. http://dx.doi.org/10.4049/jimmunol.180.11.7574.
Texto completo da fonteChang, Yie-Hwa, Duc M. Duong, Johannes B. Goll, David C. Wood, Travis L. Jensen, Luming Yin, Casey E. Gelber et al. "Proteomic Analysis of Human Immune Responses to Live-Attenuated Tularemia Vaccine". Vaccines 8, n.º 3 (24 de julho de 2020): 413. http://dx.doi.org/10.3390/vaccines8030413.
Texto completo da fonteWu, Terry H., Julie A. Hutt, Kristin A. Garrison, Lyudmila S. Berliba, Yan Zhou e C. Rick Lyons. "Intranasal Vaccination Induces Protective Immunity against Intranasal Infection with Virulent Francisella tularensis Biovar A". Infection and Immunity 73, n.º 5 (maio de 2005): 2644–54. http://dx.doi.org/10.1128/iai.73.5.2644-2654.2005.
Texto completo da fonteMalik, Meenakshi, Chandra Shekhar Bakshi, Bikash Sahay, Aaloki Shah, Steven A. Lotz e Timothy J. Sellati. "Toll-Like Receptor 2 Is Required for Control of Pulmonary Infection with Francisella tularensis". Infection and Immunity 74, n.º 6 (junho de 2006): 3657–62. http://dx.doi.org/10.1128/iai.02030-05.
Texto completo da fonteHUSNA, ASHMA UL, MUNISH R ADHIKARI, DIVYA KHAREL, YAN JIANG e GREGORY POLCHA. "UNDERSTANDING THE NEED FOR A BROAD DIFFERENTIAL DIAGNOSIS: A CASE OF PNEUMONIC TULAREMIA". Chest 162, n.º 4 (outubro de 2022): A560. http://dx.doi.org/10.1016/j.chest.2022.08.434.
Texto completo da fonteBossi, P., A. Tegnell, A. Baka, F. van Loock, A. Werner, J. Hendriks, H. Maidhof e G. Gouvras. "Bichat guidelines for the clinical management of tularaemia and bioterrorism-related tularaemia". Eurosurveillance 9, n.º 12 (1 de dezembro de 2004): 27–28. http://dx.doi.org/10.2807/esm.09.12.00503-en.
Texto completo da fonteRay, Heather J., Yu Cong, Ashlesh K. Murthy, Dale M. Selby, Karl E. Klose, Jeffrey R. Barker, M. Neal Guentzel e Bernard P. Arulanandam. "Oral Live Vaccine Strain-Induced Protective Immunity against Pulmonary Francisella tularensis Challenge Is Mediated by CD4+ T Cells and Antibodies, Including Immunoglobulin A". Clinical and Vaccine Immunology 16, n.º 4 (11 de fevereiro de 2009): 444–52. http://dx.doi.org/10.1128/cvi.00405-08.
Texto completo da fonteDembek, Z. F., R. L. Buckman, S. K. Fowler e J. L. Hadler. "Missed Sentinel Case of Naturally Occurring Pneumonic Tularemia Outbreak: Lessons for Detection of Bioterrorism". Journal of the American Board of Family Medicine 16, n.º 4 (1 de julho de 2003): 339–42. http://dx.doi.org/10.3122/jabfm.16.4.339.
Texto completo da fonteYaglom, Hayley, Edwin Rodriguez, Marlene Gaither, Mare Schumacher, Natalie Kwit, Christina Nelson, Joel Terriquez et al. "Notes from the Field: Fatal Pneumonic Tularemia Associated with Dog Exposure — Arizona, June 2016". MMWR. Morbidity and Mortality Weekly Report 66, n.º 33 (25 de agosto de 2017): 891. http://dx.doi.org/10.15585/mmwr.mm6633a5.
Texto completo da fonteRusso, Brian C., Joseph Horzempa, Dawn M. O'Dee, Deanna M. Schmitt, Matthew J. Brown, Paul E. Carlson, Ramnik J. Xavier e Gerard J. Nau. "A Francisella tularensis Locus Required for Spermine Responsiveness Is Necessary for Virulence". Infection and Immunity 79, n.º 9 (13 de junho de 2011): 3665–76. http://dx.doi.org/10.1128/iai.00135-11.
Texto completo da fonteAnderson, Rebecca V., Deborah D. Crane e Catharine M. Bosio. "Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs". Vaccine 28, n.º 40 (setembro de 2010): 6562–72. http://dx.doi.org/10.1016/j.vaccine.2010.07.072.
Texto completo da fonteSanapala, Shilpa, Jieh-Juen Yu, Ashlesh K. Murthy, Weidang Li, M. Neal Guentzel, James P. Chambers, Karl E. Klose e Bernard P. Arulanandam. "Perforin- and Granzyme-Mediated Cytotoxic Effector Functions Are Essential for Protection against Francisella tularensis following Vaccination by the Defined F. tularensis subsp. novicida ΔfopCVaccine Strain". Infection and Immunity 80, n.º 6 (9 de abril de 2012): 2177–85. http://dx.doi.org/10.1128/iai.00036-12.
Texto completo da fonteReed, Douglas S., Le'Kneitah Smith, Tammy Dunsmore, Anita Trichel, Luis A. Ortiz, Kelly Stefano Cole e Eileen Barry. "Pneumonic Tularemia in Rabbits Resembles the Human Disease as Illustrated by Radiographic and Hematological Changes after Infection". PLoS ONE 6, n.º 9 (13 de setembro de 2011): e24654. http://dx.doi.org/10.1371/journal.pone.0024654.
Texto completo da fonteSchmitt, Deanna, Dawn O'Dee, Matthew Brown, Jospeh Horzempa, Brian Russo e Gerard Nau. "IL-15/IL-15Rα improves immune cell survival but does not reduce disease severity following pulmonary infection with the intracellular bacterium Francisella tularensis (56.27)". Journal of Immunology 186, n.º 1_Supplement (1 de abril de 2011): 56.27. http://dx.doi.org/10.4049/jimmunol.186.supp.56.27.
Texto completo da fonteLi, Zilu, Daniel L. Clemens, Bai-Yu Lee, Barbara Jane Dillon, Marcus A. Horwitz e Jeffrey I. Zink. "Mesoporous Silica Nanoparticles with pH-Sensitive Nanovalves for Delivery of Moxifloxacin Provide Improved Treatment of Lethal Pneumonic Tularemia". ACS Nano 9, n.º 11 (9 de outubro de 2015): 10778–89. http://dx.doi.org/10.1021/acsnano.5b04306.
Texto completo da fonteBar-On, Liat, Hila Cohen, Uri Elia, Shahar Rotem, Adi Bercovich-Kinori, Erez Bar-Haim, Theodor Chitlaru e Ofer Cohen. "Protection of vaccinated mice against pneumonic tularemia is associated with an early memory sentinel-response in the lung". Vaccine 35, n.º 50 (dezembro de 2017): 7001–9. http://dx.doi.org/10.1016/j.vaccine.2017.10.053.
Texto completo da fonteStinson, Elizabeth, Le'Kneitah P. Smith, Kelly Stefano Cole, Eileen M. Barry e Douglas S. Reed. "Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model". Pathogens and Disease 74, n.º 7 (9 de agosto de 2016): ftw079. http://dx.doi.org/10.1093/femspd/ftw079.
Texto completo da fontePriyantha, M. A. R. "Francisella tularensis: a zoonotic pathogen among wild rodents and arthropods - a possible threat in future". Sri Lanka Veterinary Journal 70, n.º 1 (6 de setembro de 2023): 13–21. http://dx.doi.org/10.4038/slvj.v70i1.76.
Texto completo da fonteSutherland, Marjorie D., Andrew W. Goodyear, Ryan M. Troyer, Jeffrey C. Chandler, Steven W. Dow e John T. Belisle. "Post-exposure immunization against Francisella tularensis membrane proteins augments protective efficacy of gentamicin in a mouse model of pneumonic tularemia". Vaccine 30, n.º 33 (julho de 2012): 4977–82. http://dx.doi.org/10.1016/j.vaccine.2012.05.037.
Texto completo da fonteKouadio, Koffi Isidore, Taro Kamigaki e Hitoshi Oshitani. "Strategies for Communicable Diseases Response After Disasters in Developing Countries". Journal of Disaster Research 4, n.º 5 (1 de outubro de 2009): 298–308. http://dx.doi.org/10.20965/jdr.2009.p0298.
Texto completo da fonteClemens, Daniel L., Bai-Yu Lee, Sheba Plamthottam, Michael V. Tullius, Ruining Wang, Chia-Jung Yu, Zilu Li, Barbara Jane Dillon, Jeffrey I. Zink e Marcus A. Horwitz. "Nanoparticle Formulation of Moxifloxacin and Intramuscular Route of Delivery Improve Antibiotic Pharmacokinetics and Treatment of Pneumonic Tularemia in a Mouse Model". ACS Infectious Diseases 5, n.º 2 (27 de novembro de 2018): 281–91. http://dx.doi.org/10.1021/acsinfecdis.8b00268.
Texto completo da fonteLee, Bai-Yu, Zilu Li, Daniel L. Clemens, Barbara Jane Dillon, Angela A. Hwang, Jeffrey I. Zink e Marcus A. Horwitz. "Redox-Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snap-Tops Enhances Efficacy Against Pneumonic Tularemia in Mice". Small 12, n.º 27 (1 de junho de 2016): 3690–702. http://dx.doi.org/10.1002/smll.201600892.
Texto completo da fonteFuruya, Yoichi, Girish S. Kirimanjeswara, Sean Roberts e Dennis W. Metzger. "Increased Susceptibility of IgA-Deficient Mice to Pulmonary Francisella tularensis Live Vaccine Strain Infection". Infection and Immunity 81, n.º 9 (8 de julho de 2013): 3434–41. http://dx.doi.org/10.1128/iai.00408-13.
Texto completo da fonteRodriguez, Annette Rose, JiehJuen Yu, Ashlesh Murthy, M. Neal Guentzel, Karl E. Klose, James P. Chambers, Thomas G. Forsthurber, Michael T. Berton e Bernard P. Arulanandam. "Mast cells induce alternative activation and inhibit caspase-3 mediated apoptosis of Francisella tularensis infected macrophages (44.24)". Journal of Immunology 182, n.º 1_Supplement (1 de abril de 2009): 44.24. http://dx.doi.org/10.4049/jimmunol.182.supp.44.24.
Texto completo da fonteWest, T. Eoin, Mark R. Pelletier, Melanie C. Majure, Annalisa Lembo, Adeline M. Hajjar e Shawn J. Skerrett. "Inhalation of Francisella novicida ΔmglA causes replicative infection that elicits innate and adaptive responses but is not protective against invasive pneumonic tularemia". Microbes and Infection 10, n.º 7 (junho de 2008): 773–80. http://dx.doi.org/10.1016/j.micinf.2008.04.008.
Texto completo da fonteBalagopal, Ashwin, Amanda Shearer MacFarlane, Nrusingh Mohapatra, Shilpa Soni, John S. Gunn e Larry S. Schlesinger. "Characterization of the Receptor-Ligand Pathways Important for Entry and Survival of Francisella tularensis in Human Macrophages". Infection and Immunity 74, n.º 9 (setembro de 2006): 5114–25. http://dx.doi.org/10.1128/iai.00795-06.
Texto completo da fonteHorzempa, Joseph, Dawn M. O'Dee, Robert M. Q. Shanks e Gerard J. Nau. "Francisella tularensis ΔpyrF Mutants Show that Replication in Nonmacrophages Is Sufficient for Pathogenesis In Vivo". Infection and Immunity 78, n.º 6 (12 de abril de 2010): 2607–19. http://dx.doi.org/10.1128/iai.00134-10.
Texto completo da fonteBarrigan, Lydia, Shraddha Tuladhar, Jason Brunton, Matthew Woolard, Ching-ju Chen, Divey Saini, Richard Frothingham, Gregory Sempowski, Thomas Kawula e Jeffrey Frelinger. "Altered host immune responses, not lowered growth, are the mechanism of attenuation of Francisella tularensis clpB (P3126)". Journal of Immunology 190, n.º 1_Supplement (1 de maio de 2013): 186.10. http://dx.doi.org/10.4049/jimmunol.190.supp.186.10.
Texto completo da fonteWyatt, Elliott V., Karina Diaz, Amanda Griffin, Jed Rasmussen, Deborah Crane, Bradley Jones e Catharine M. Bosio. "Optimal replication and suppression of inflammation by virulent Francisella tularensis is achieved through reprogramming of host glycolysis." Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 66.7. http://dx.doi.org/10.4049/jimmunol.196.supp.66.7.
Texto completo da fonte