Literatura científica selecionada sobre o tema "Plasticity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Plasticity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Plasticity"
Sturiale, Samantha L., e Nathan W. Bailey. "Within-generation and transgenerational social plasticity interact during rapid adaptive evolution". Evolution 77, n.º 2 (15 de dezembro de 2022): 409–21. http://dx.doi.org/10.1093/evolut/qpac036.
Texto completo da fonteVriz, Sophie, e Alain Joliot. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity". L’annuaire du Collège de France, n.º 116 (15 de junho de 2018): 662–64. http://dx.doi.org/10.4000/annuaire-cdf.13506.
Texto completo da fonteVriz, Sophie, e Alain Joliot. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity". L’annuaire du Collège de France, n.º 117 (1 de setembro de 2019): 648–50. http://dx.doi.org/10.4000/annuaire-cdf.14791.
Texto completo da fonteVriz, Sophie, e Alain Joliot. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity". L’annuaire du Collège de France, n.º 118 (30 de dezembro de 2020): 672–73. http://dx.doi.org/10.4000/annuaire-cdf.16188.
Texto completo da fonteJoliot, Responsables :. Sophie Vriz et. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity". L’annuaire du Collège de France, n.º 120 (13 de fevereiro de 2023): 552. http://dx.doi.org/10.4000/annuaire-cdf.18891.
Texto completo da fonteJoliot, Alain, e Sophie Vriz. "Homéoprotéines et plasticité cellulaire / Homeoproteins and cell plasticity". L’annuaire du Collège de France 121 (2024): 688. http://dx.doi.org/10.4000/12kvm.
Texto completo da fonteFine, Cordelia, Rebecca Jordan-Young, Anelis Kaiser e Gina Rippon. "Plasticity, plasticity, plasticity…and the rigid problem of sex". Trends in Cognitive Sciences 17, n.º 11 (novembro de 2013): 550–51. http://dx.doi.org/10.1016/j.tics.2013.08.010.
Texto completo da fonteBibi, Zubaira, Muhammad Junaid Maqsood, Ayesha Idrees, Hafisa Rafique, Aliza Amjad Butt, Rameesha Ali, Zunaira Arif e Mutie Un Nabi. "Exploring the Role of Phenotypic Plasticity in Plant Adaptation to Changing Climate: A Review". Asian Journal of Research in Crop Science 9, n.º 1 (2 de janeiro de 2024): 1–9. http://dx.doi.org/10.9734/ajrcs/2024/v9i1241.
Texto completo da fonteCree, Dylan Jeffrey. "Of Force? Plasticity, Annihilation and Change". Humanities 11, n.º 4 (30 de junho de 2022): 83. http://dx.doi.org/10.3390/h11040083.
Texto completo da fonteMorris, Matthew R. J. "Plasticity-Mediated Persistence in New and Changing Environments". International Journal of Evolutionary Biology 2014 (15 de outubro de 2014): 1–18. http://dx.doi.org/10.1155/2014/416497.
Texto completo da fonteTeses / dissertações sobre o assunto "Plasticity"
Sherwood, James Lawrence. "Mossy fibre plasticity". Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618313.
Texto completo da fonteKlempin, Friederike Claudia. "Adult brain plasticity". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15844.
Texto completo da fonteThe hippocampus as one region with ongoing neurogenesis throughout life contributes to the formation of long-term memory and has also been implicated in the pathology of major depression. Studies suggest that depression might be due to decreased levels of serotonin and reduced neurogenesis in the adult brain and that the beneficial effects of selective serotonin reuptake inhibitors would require adult hippocampal neurogenesis. Here, I investigated how modulation of serotonergic neurotransmission by acute and chronic treatment with the antidepressant fluoxetine, and selective serotonin receptor agonists and antagonists in adult mice influences precursor cell activity during development. I focused on 5-HT1a and 5-HT2 receptors as major mediators of serotonin action. The present findings suggest that an opposed action of 5-HT1a and 5-HT2c receptor subtypes result in a balanced regulation of serotonin levels in the dentate gyrus. Both receptors differentially affect intermediate cell stages in adult hippocampal neurogenesis and play an important role in the survival of newly generated neurons. Furthermore, this study confirms that chronic fluoxetine treatment increases adult neurogenesis. In conclusion, the latency of onset of fluoxetine action can be explained by a balanced interplay of 5-HT1a and 5-HT2c receptor subtypes.
Elramah, Sara. "Towards a Better Understanding of miRNA Function in Neuronal Plasticity : implications in Synaptic Homeostasis and Maladaptive Plasticity in Bone Cancer Pain Condition". Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22073/document.
Texto completo da fonteMicroRNAs (miRNAs) are a type of small RNA molecules (21-25nt), with a central role in RNA silencing and interference. MiRNAs function as negative regulators of gene expression at the post-transcriptional level, by binding to specific sites on their targeted mRNAs. A process results in mRNA degradation or repression of productive translation. Because partial binding to target mRNA is enough to induce silencing, each miRNA has up to hundreds of targets. miRNAs have been shown to be involved in most, if not all, fundamental biological processes. Some of the most interesting examples of miRNA activity regulation are coming from neurons. Almost 50% of all identified miRNAs are expressed in the mammalian brain. Furthermore, miRNAs appear to be differentially distributed in distinct brain regions and neuron types. Importantly, miRNAs are reported to be differentially distributed at the sub-cellular level. Recently, miRNAs have been suggested to be involved in the local translation of neuronal compartments. This has been derived from the observations reporting the presence of miRNAs and the protein complexes involved in miRNA biogenesis and function in neuronal soma, dendrites, and axons. Deregulation of miRNAs has been shown to be implicated in pathological conditions. The present thesis aimed at deciphering the role of miRNA regulation in neuronal plasticity. Here we investigated the involvement of miRNA in synaptic plasticity, specifically in homeostatic synaptic plasticity mode. In addition, we investigated the involvement of miRNAs in the maladaptive nervous system state, specifically, in bone cancer pain condition.We hypothesized that local regulation of AMPA receptor translation in dendrites upon homeostatic synaptic scaling may involve miRNAs. Using bioinformatics, qRT-PCR and luciferase reporter assays, we identified several brain-specific miRNAs including miR-92a, targeting the 3’UTR of GluA1 mRNA. Immunostaining of AMPA receptors and recordings of miniature AMPA currents in primary neurons showed that miR-92a selectively regulates the synaptic incorporation of new GluA1-containing AMPA receptors during activity blockade.Pain is a very common symptom associated with cancer and is still a challenge for clinicians due to the lack of specific and effective treatments. This reflects the crucial lack of knowledge regarding the molecular mechanisms responsible for cancer-related pain. Combining miRNA and mRNA screenings we were able to identify a regulatory pathway involving the nervous system-enriched miRNA, miR-124. Thus, miR-124 downregulation was associated with an upregulation of its predicted targets, Calpain 1, Synaptopodin and Tropomyosin 4 in a cancer-pain model in mice. All these targets have been previously identified as key proteins for the synapse function and plasticity. Clinical pertinence of this finding was assessed by the screening of cerebrospinal fluid from cancer patient suffering from pain who presented also a downregulation of miR-124, strongly suggesting miR-124 as a therapeutic target. In vitro experiments confirmed that miR-124 exerts a multi-target inhibition on Calpain 1, Synaptopodin and Tropomyosin 4. In addition, intrathecal injection of miR-124 was able to normalize the Synaptopodin expression and to alleviate the initial phase of cancer pain in mice
VanDam, Mark. "Plasticity of phonological categories". [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3277973.
Texto completo da fonteSource: Dissertation Abstracts International, Volume: 68-09, Section: A, page: 3830. Adviser: Robert F. Port. Title from dissertation t.p. (viewed May 1, 2008).
Brookes, Jill. "The plasticity of diamond". Thesis, University of Hull, 1992. http://hydra.hull.ac.uk/resources/hull:6745.
Texto completo da fonteTsakmaki, Anastasia. "Plasticity of the endoderm". Thesis, University of Bath, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538557.
Texto completo da fonteCastell, Martin R. "Indentation plasticity in semiconductors". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363040.
Texto completo da fonteKothari, Manish. "Rate independent crystal plasticity". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36611.
Texto completo da fonteGuinnee, Meghan A. "Plasticity in reproductive traits". Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/16998.
Texto completo da fonteDekkers, Martijn. "Plasticity in Caenorhabditis elegans". [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2008. http://hdl.handle.net/1765/13961.
Texto completo da fonteLivros sobre o assunto "Plasticity"
Han, Weimin, e B. Daya Reddy. Plasticity. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5940-8.
Texto completo da fonteBorja, Ronaldo I. Plasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38547-6.
Texto completo da fonteWang, Zhongren, Weilong Hu, S. J. Yuan e Xiaosong Wang. Engineering Plasticity. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2018. http://dx.doi.org/10.1002/9781119237310.
Texto completo da fonteChakrabarty, J. Applied Plasticity. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3268-9.
Texto completo da fonteChen, W. F., e H. Zhang. Structural Plasticity. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-2984-1.
Texto completo da fonteKreutz, Michael R., e Carlo Sala, eds. Synaptic Plasticity. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0932-8.
Texto completo da fonteFilogamo, Guido, Antonia Vernadakis, Fulvia Gremo, Alain M. Privat e Paola S. Timiras, eds. Brain Plasticity. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9551-6.
Texto completo da fonteYu, Maohong, Jianchun Li e Guowei Ma. Structural Plasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88152-0.
Texto completo da fonteChevreux, Laurent, Wim Plaizier, Christian Schuh, Wayne Brown e Alenka Triplat. Corporate Plasticity. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6748-5.
Texto completo da fonteYu, Mao-Hong, e Jian-Chun Li. Computational Plasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24590-9.
Texto completo da fonteCapítulos de livros sobre o assunto "Plasticity"
McAllister-Williams, R. Hamish, Daniel Bertrand, Hans Rollema, Raymond S. Hurst, Linda P. Spear, Tim C. Kirkham, Thomas Steckler et al. "Plasticity". In Encyclopedia of Psychopharmacology, 1034. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_4466.
Texto completo da fonteBodin, Doug, Keith Owen Yeates e Jennifer Cass. "Plasticity". In Encyclopedia of Clinical Neuropsychology, 1956–57. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_1587.
Texto completo da fonteBertram, Albrecht. "Plasticity". In Elasticity and Plasticity of Large Deformations, 255–320. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24615-9_10.
Texto completo da fonteBodin, Doug, Keith Owen Yeates e Jennifer Cass. "Plasticity". In Encyclopedia of Clinical Neuropsychology, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_1587-2.
Texto completo da fonteMunz, Dietrich, e Theo Fett. "Plasticity". In Ceramics, 265–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58407-7_13.
Texto completo da fonteKhandker, Wahida. "Plasticity". In Process Metaphysics and Mutative Life, 145–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43048-1_6.
Texto completo da fonteBodin, Doug, Keith Owen Yeates e Jennifer Cass. "Plasticity". In Encyclopedia of Clinical Neuropsychology, 2700–2702. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_1587.
Texto completo da fonteLoos, H., G. M. Innocenti, S. H. C. Hendry, R. K. Carder, T. Kasamatsu, A. Artola, S. Bröcher, T. Hensch e S. Singer. "Plasticity". In Structural and Functional Organization of the Neocortex, 47–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78499-6_2.
Texto completo da fonteMacaulay, M. "Plasticity". In Introduction to Impact Engineering, 41–58. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3159-6_3.
Texto completo da fonteMaggiore, Valeria. "Plasticity". In Lecture Notes in Morphogenesis, 417–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51324-5_95.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Plasticity"
Nallur, Vivek, Nicolás Cardozo e Siobhán Clarke. "Clonal plasticity". In ICSE '16: 38th International Conference on Software Engineering. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897053.2897067.
Texto completo da fonte"Design Plasticity". In Oct. 5-6, 2017 Paris - France. EIRAI, 2017. http://dx.doi.org/10.17758/eirai.f1017305.
Texto completo da fonteLi, Yang, e Shihao Ji. "Neural Plasticity Networks". In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534123.
Texto completo da fonteCoutaz, Joëlle. "User interface plasticity". In the 2nd ACM SIGCHI symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1822018.1822019.
Texto completo da fonteDEBONO, Marc-Williams. "Transdisciplinary Chair & Human Plasticity". In For an international transdisciplinary chair. ADJURIS – International Academic Publisher, 2024. http://dx.doi.org/10.62768/adjuris/2024/2/02.
Texto completo da fonteYaman, Anil, Giovanni Iacca, Decebal Constantin Mocanu, George Fletcher e Mykola Pechenizkiy. "Novelty producing synaptic plasticity". In GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377929.3389976.
Texto completo da fonteZuev, Lev. "Autowave mechanics of plasticity". In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132276.
Texto completo da fonteOliveira, Raquel, Sophie Dupuy-Chessa e Gaëlle Calvary. "Plasticity of user interfaces". In EICS'15: ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2774225.2775078.
Texto completo da fonteTeixeira, Filipe Peliz Pinto, e Murray Shanahan. "Does plasticity promote criticality?" In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889562.
Texto completo da fonteDemeure, Alexandre, e Gaëlle Calvary. "Plasticity of user interfaces". In the 15th French-speaking conference on human-computer interaction. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1063669.1063681.
Texto completo da fonteRelatórios de organizações sobre o assunto "Plasticity"
Valanis, Kirk C., e Harold E. Read. Endochronic Plasticity. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1987. http://dx.doi.org/10.21236/ada200758.
Texto completo da fonteDvorak, George J. Plasticity of Fibrous Composites. Fort Belvoir, VA: Defense Technical Information Center, maio de 1987. http://dx.doi.org/10.21236/ada184637.
Texto completo da fonteOlson, G. B. Transformation plasticity in ductile solids. Office of Scientific and Technical Information (OSTI), fevereiro de 1993. http://dx.doi.org/10.2172/6739411.
Texto completo da fonteLynch, Gary. Synaptic Plasticity and Memory Formation. Fort Belvoir, VA: Defense Technical Information Center, maio de 1992. http://dx.doi.org/10.21236/ada253904.
Texto completo da fonteLynch, Gary. Synaptic Plasticity and Memory Formation. Fort Belvoir, VA: Defense Technical Information Center, março de 2000. http://dx.doi.org/10.21236/ada376184.
Texto completo da fonteLester, Brian T., e William M. Scherzinger. Adiabatic Heating in Modular Plasticity Models. Office of Scientific and Technical Information (OSTI), dezembro de 2019. http://dx.doi.org/10.2172/1592912.
Texto completo da fontePritchard, Robert S. Plasticity Constitutive Law for Sea Ice. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1999. http://dx.doi.org/10.21236/ada630554.
Texto completo da fonteAnand, Lallit. Large Deformation Plasticity of Polycrystalline Tantalum. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2000. http://dx.doi.org/10.21236/ada391221.
Texto completo da fonteJanney, M. A., M. C. Vance, A. C. Jordan e M. P. Kertesz. Bibliography of ceramic extrusion and plasticity. Office of Scientific and Technical Information (OSTI), março de 1987. http://dx.doi.org/10.2172/6545977.
Texto completo da fonteLester, Brian, e William Scherzinger. Modular Plane Stress Plasticity Material Model. Office of Scientific and Technical Information (OSTI), março de 2019. http://dx.doi.org/10.2172/1761882.
Texto completo da fonte