Literatura científica selecionada sobre o tema "Plasmomechanics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Plasmomechanics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Plasmomechanics"
Maurer, Thomas, Joseph Marae-Djouda, Ugo Cataldi, Arthur Gontier, Guillaume Montay, Yazid Madi, Benoît Panicaud et al. "The beginnings of plasmomechanics: towards plasmonic strain sensors". Frontiers of Materials Science 9, n.º 2 (27 de abril de 2015): 170–77. http://dx.doi.org/10.1007/s11706-015-0290-z.
Texto completo da fonteCaputo, Roberto, Ugo Cataldi, Thomas Bürgi e Cesare Umeton. "Plasmomechanics: A Colour-Changing Device Based on the Plasmonic Coupling of Gold Nanoparticles". Molecular Crystals and Liquid Crystals 614, n.º 1 (13 de junho de 2015): 20–29. http://dx.doi.org/10.1080/15421406.2015.1049897.
Texto completo da fonteWon, Rachel. "Versatile plasmomechanical systems". Nature Photonics 12, n.º 3 (26 de fevereiro de 2018): 123. http://dx.doi.org/10.1038/s41566-018-0124-5.
Texto completo da fonteThijssen, Rutger, Tobias J. Kippenberg, Albert Polman e Ewold Verhagen. "Plasmomechanical Resonators Based on Dimer Nanoantennas". Nano Letters 15, n.º 6 (7 de maio de 2015): 3971–76. http://dx.doi.org/10.1021/acs.nanolett.5b00858.
Texto completo da fonteLee, Shinho, e Min-Kyo Seo. "Full three-dimensional wavelength-scale plasmomechanical resonator". Optics Letters 46, n.º 6 (10 de março de 2021): 1317. http://dx.doi.org/10.1364/ol.416695.
Texto completo da fonteGontier, Arthur, J. Marae-Djouda, R. Caputo, Y. Madi, M. Molinari, G. Léveque, P. M. Adam e T. Maurer. "Optical properties of gold nanorods macro-structure: a numerical study". Photonics Letters of Poland 9, n.º 1 (31 de março de 2017): 23. http://dx.doi.org/10.4302/plp.v9i1.714.
Texto completo da fonteBuch, Zubair, e Silvan Schmid. "Design considerations of gold nanoantenna dimers for plasmomechanical transduction". Optics Express 30, n.º 4 (3 de fevereiro de 2022): 5294. http://dx.doi.org/10.1364/oe.450837.
Texto completo da fonteRoxworthy, Brian J., Sreya Vangara e Vladimir A. Aksyuk. "Subdiffraction Spatial Mapping of Nanomechanical Modes Using a Plasmomechanical System". ACS Photonics 5, n.º 9 (31 de julho de 2018): 3658–65. http://dx.doi.org/10.1021/acsphotonics.8b00604.
Texto completo da fonteRoxworthy, Brian J., e Vladimir A. Aksyuk. "Electrically tunable plasmomechanical oscillators for localized modulation, transduction, and amplification". Optica 5, n.º 1 (18 de janeiro de 2018): 71. http://dx.doi.org/10.1364/optica.5.000071.
Texto completo da fonteUgo, Cataldi, e Buergi Thomas. "Plasmonic coupling induced by growing processes of metal nanoparticles in wrinkled structures and driven by mechanical strain applied to a polidimethisiloxisilane template". Photonics Letters of Poland 9, n.º 2 (1 de julho de 2017): 45. http://dx.doi.org/10.4302/plp.v9i2.702.
Texto completo da fonteTeses / dissertações sobre o assunto "Plasmomechanics"
Güell, i. Grau Pau. "Soft Plasmomechanical Metamaterials for Sensing and Actuation". Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671820.
Texto completo da fonteDurante la ultima década, los materiales inteligentes han emergido como una tendencia fascinante en la ciencia de materiales. En éste ámbito, los materiales optomecánicos blandos son especialmente interesantes para desarrollar dispositivos de sensado y actuación innovadores gracias a la naturaleza inalámbrica de los sistemas ópticos y la posibilidad de ser combinada con otros tipos de estimulación. En particular, la inclusión de nanopartículas o nanoestructuras plasmónicas en sustratos poliméricos blandos conlleva posibilidades interesantes, como las características ópticas fáciles de modificar de los materiales plasmónicos y la gran elasticidad y robustez de los materiales blandos. Ésta nueva clase de materiales es referida en esta tesis como a metamateriales plasmomecánicos blandos. Aún así, éste particular campo de estudio es relativamente reciente. Por éste motivo, ésta tesis está dedicada al desarrollo de nuevos metamateriales plasmomecánicos blandos, llevando a cabo el estudio detallado de sus propiedades ópticas y mecánicas y su diseño para el uso en aplicaciones prácticas en el ámbito del sensado y la actuación. Específicamente, las dificultades de implementar absorbentes lumínicos de ancho de banda amplio eficientes en sustratos flexibles o elásticos son abordadas con el desarrollo de un nuevo metamaterial basado en una capa de hierro nanoestructurado sobre una capa fina elastomèrica. Éste nuevo metamaterial combina las resonancias plasmónicas amortiguadas del hierro nanoestructurado con la absorción infrarroja del PDMS para conseguir una absorción independiente del ángulo y con un gran ancho de anda. Ése excepcional comportamiento óptico es explotado para desarrollar diferentes dispositivos foto-termo-mecánicos inalámbricos y innovadores. A través de la explotación de las propiedades magnéticas del hierro, el mismo metamaterial es utilizado para desarrollar un actuador inalámbrico y multi-funcional. Específicamente, el control de la fuerza y dirección de la actuación magnética es combinada con la actuación lumínica, permitiendo condiciones de operación remotas y versátiles. Además, se ha conseguido la incorporación de la funcionalidad de auto-sensado a través de incluir una estructura de malla fotónica en la parte posterior del actuador. La respuesta mecánica del actuador a cualquier estímulo externo se muestra como un cambio de coloración y es cuantificada en tiempo real a través de las imágenes tomadas a través de una cámara convencional. La actuación remota y multi-estímulo del dispositivo, juntamente con las capacidades de auto-sensado establecen las bases para el desarrollo de mecanismos para operaciones en robótica blanda en ambientes inaccesibles o peligrosos. Finalmente, se ha demostrado el desarrollo de la primera cavidad Fabry-Perot estirable y amplificada plasmónicamente para el sensado óptico de esfuerzo. Éste nuevo material consiste en una matriz de “media-cáscara” de oro plasmónico auto-organizadas, las cuales son auto-incrustadas dentro de un sustrato elastomérico arrugado. Ésta morfología da lugar a un comportamiento óptico poco convencional que puede ser ajustado a través delas condiciones de fabricación. El material presenta una respuesta óptica intensa al esfuerzo mecánico, con sensibilidad similar a otras aproximaciones basadas en procesos de fabricación más complejas. Además, presenta gran robustez y deformabilidad, las cuales permiten su aplicación como sensor inalámbrico de esfuerzo en superficies curvas. En resumen, ésta tesis aborda diferentes retos en el desarrollo de materiales inteligentes optomecánicos blandos para diversas plataformas de sensado y actuación.
During the last decade, smart materials have emerged as an exciting trend in materials science. Within this scope, soft optomechanical materials are especially appealing for developing innovative sensing and actuation devices due to the wireless nature of optics and the possibility to be combined with other types of stimuli. In particular, the inclusion of plasmonic nanoparticles or nanostructures into soft polymer substrates entail interesting possibilities, such as the easily-tunable optical features of plasmonic materials and large elasticity and robustness of soft materials. This new class of materials are referred as soft plasmomechanical metamaterials. However, this particular field of study is relatively recent. To that end, this thesis is dedicated to the development of new soft plasmomechanical metamaterials, bringing together the detailed study of their optical and mechanical properties with the design for their use into practical applications within the scope of sensing and actuation. Specifically, the difficulties of implementing efficient broadband light absorbers into flexible or stretchable substrates are tackled by the development of a novel metamaterial based on a nanostructured iron layer on a thin elastomer film. This new metamaterial combines the damped plasmonic resonances of the nanostructured iron with the infrared absorption of PDMS to achieve an unprecedented broadband and angle-independent light absorption in flexible materials. This exceptional optical behaviour, together with a large mismatch on the mechanical properties of both materials are exploited to develop diverse innovative untethered photo-thermo-mechanical devices. By exploiting the magnetic properties of iron, the same metamaterial is then used to develop an untethered, multi-functional actuator. Specifically, the control of the magnetic actuation strength and direction is combined with the broadband light actuation, enabling remote and versatile work operation conditions for soft-robotics applications. In addition, the incorporation of a self-sensing functionality is achieved by including a photonic grating structure at the actuator back-side, which provides structural coloration to the actuator. The mechanical response of the actuator to any external stimuli is displayed as a coloration shift and quantified in real-time by the images taken by a conventional camera. The remote and multi-stimuli actuation of the device, together with its self-sensing capabilities set the foundations for soft robotics operations in inaccessible or hazardous environments. Finally, the development of the first stretchable plasmonic-enhanced Fabry-Perot cavity is demonstrated for optical strain sensing. This new material consists on an array of self-assembled plasmonic gold semi-shells which are self-embedded into a wrinkled elastomer matrix. This peculiar morphology gives rise to unconventional optical behaviour that can be tuned by the manufacturing conditions. The material shows strong optical to mechanical strain, with similar sensitivity to other sensing approaches based in more complex fabrication processes. Furthermore, it shows large robustness and deformability, that enables its application as wireless pressure/strain sensing into curved surfaces. Overall, this thesis tackles different challenges in the development of soft smart optomechanical materials for diverse sensing and actuation platforms.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
Solís, Tinoco Verónica Iraís. "Development of integrated plasmomechanical sensors in microfluidic devices for live cell analysis". Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/399994.
Texto completo da fonteThis doctoral Thesis focuses on the design, study, and optimization of the controlled fabrication metodology of a flexible plasmo-mechanical sensor with microfluidics, as well as its optical and mechanical characterization. We are interested in the use of this sensor to study cell traction forces for its essential role in cell functions (e.g., adhesion, survival, migration, proliferation, and differentiation) and tissue development. Nowadays, the monitoring and quantification of those traction forces are one of the challenges faced by cell biology. We take advantage of the use of polymeric materials, and low-cost and large-scale nanofabrication techniques to create the new prototype sensor. The sensor is formed by a hexagonal array of polymeric nanopillars capped with plasmonic gold nanodisks into a microfluidic channel. The main strategy for the fabrication of the sensor is based on replica molding techniques. The diameter, height, and separation of the nanopillars are designed in order to replicate the structures using polymers with different Young’s modulus, and to control their mechanical flexibility.The plasmonic gold nanodisks are deposited on top of the nanopillars by controlled metal evaporation. Finally, the building of the integrated microfluidic sensor is based on a permanent bonding strategy. The transduction is based on combining the mechanical flexibility of the nanopillars with the optical properties of the gold nanodisks that exhibit localized surface plasmon resonances (LSPR). The results suggest that the combination of the mechanical flexibility of the polymer nanopillars with the optical properties of the gold nanodisks allow the monitoring of refractive index changes in the environment. The mechanical properties (e.g., spring constant) can be used to control the mechanical stability of the polymer structures, and also to mimic the mechanical properties of soft or rigid tissues. A preliminary analysis of cell culture onto the nanopillar array was carried out as a proof-of-concept to know the advantages and the limits of the new sensor design and the optical detection system. The results showed that the living cells could adhere and interact with the Au-capped nanopillars with different rigidity, inducing detectable LSPR changes. The work in this Thesis represents a significant step towards the implementation of novel and more efficient sensors for the study of cell biology, which could play a key role in the understanding of essential biological processes.
Ahmidayi, Najat. "Déformations de systèmes plasmoniques : application aux nanocapteurs de déformations". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILN022.
Texto completo da fonteBased on the exploitation of the optical properties of metallic nanoparticles in combination with flexible materials, plasmonomechanics has recently emerged as a subfield of nano-optomechanics. Plasmonomechanical systems, which enable the measurement of mechanical strains applied to flexible substrates through the plasmonic response of nanostructures, have attracted much attention in the scientific research community due to their potential applications, notably in strain detectors.Understanding the microscopic mechanical response to macroscopic deformation is a foundation of plasmonomechanics, essential for comprehending the optical response of nanostructures and its evolution. The first objective of this thesis is to understand, through numerical simulation tools, the mechanical and plasmonic responses, and more precisely, how interparticle distances evolve at the nanometric scale when macroscopic mechanical strain is imposed and influence the plasmonic response of the system. This will be studied through simple plasmonomechanical systems composed of gold nanodimers deposited on a PDMS membrane.Another challenge in this field is the design of plasmonomechanical systems with high sensitivity to mechanical deformations. This can be achieved through plasmonic systems supporting resonance modes with minimal losses (narrow linewidth). Thus, the second objective of this thesis is to realize plasmonomechanical systems supporting resonances such as the Fano resonance in a rod-disk system and the surface lattice resonance in a 2D array of gold nanorings, both known for their sharp and narrow resonance profiles
Trabalhos de conferências sobre o assunto "Plasmomechanics"
Yi, Fei, Hai Zhu, Jason C. Reed e Ertugrul Cubukcu. "Thermal Plasmomechanical Infrared Detector". In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qf2a.1.
Texto completo da fonteRoxworthy, Brian J., e Vladimir A. Aksyuk. "Subdiffraction optical motion transduction using a scalable plasmomechanical platform". In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu3d.5.
Texto completo da fonteRoxworthy, Brian J., e Vladimir A. Aksyuk. "Electro-Optic Switching and Regenerative Oscillation of a Localized Gap Plasmomechanical Resonator". In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.fm2a.1.
Texto completo da fonteLee, Shinho, e Min-Kyo Seo. "Optical Excitation and Detection of Picometer-Order Longitudinal Motion in Sub-µm Plasmomechanical Resonator". In 2021 26th Microoptics Conference (MOC). IEEE, 2021. http://dx.doi.org/10.23919/moc52031.2021.9598082.
Texto completo da fonteLee, Shinho, e Min-Kyo Seo. "Optical excitation and detection of 1-pm-order mechanical oscillation in sub-wavelength-scale plasmomechanical system". In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX, editado por Yu-Jung Lu, Takuo Tanaka e Din Ping Tsai. SPIE, 2021. http://dx.doi.org/10.1117/12.2594414.
Texto completo da fonte