Literatura científica selecionada sobre o tema "Plasma activation grafting"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Plasma activation grafting".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Plasma activation grafting"
Chang, Juu En, Yi Kuo Chang, Min Her Leu, Ying Liang Chen e Jing Hong Huang. "Application of Ambient-Temperature Argon Plasma Modified PET Fibers with Surface Grafting for Heavy Metal Removal". Advanced Materials Research 978 (junho de 2014): 153–56. http://dx.doi.org/10.4028/www.scientific.net/amr.978.153.
Texto completo da fonteDas, B. "Cold plasma activation and silane grafting on a moving fiber glass bundle*". Journal of Adhesion Science and Technology 10, n.º 12 (janeiro de 1996): 1371–82. http://dx.doi.org/10.1163/156856196x00300.
Texto completo da fonteAlonso, Janaína G., Carla Dalmolin, Jacimar Nahorny, Abel A. C. Recco, Luis C. Fontana e Daniela Becker. "Active screen plasma system applied to polymer surface modification: poly(lactic acid) surface activation before polyaniline graft polymerization in aqueous medium". Journal of Polymer Engineering 38, n.º 8 (28 de agosto de 2018): 795–802. http://dx.doi.org/10.1515/polyeng-2017-0298.
Texto completo da fonteShalaby, Marwa S., Heba Abdallah, Ralph Wilken, Schmüser Christoph e Ahmed M. Shaban. "Surface Treatment by Physical Irradiation for Antifouling, Chlorine-Resistant RO Membranes". Membranes 13, n.º 2 (13 de fevereiro de 2023): 227. http://dx.doi.org/10.3390/membranes13020227.
Texto completo da fonteHoel, Tom N., Vibeke Videm, Tom E. Mollnes, Kjell Saatvedt, Frank Brosstad, Arnt E. Fiane, Erik Fosse e Jan L. Svennevig. "Off-pump cardiac surgery abolishes complement activation". Perfusion 22, n.º 4 (julho de 2007): 251–56. http://dx.doi.org/10.1177/0267659107084142.
Texto completo da fonteMedvedeva, E. A., L. G. Gelis, V. V. Shumavets e I. I. Russkikh. "CLINICAL OUTCOMES AND DYNAMICS OF PLATELET-PLASMA AND VASCULAR HEMOSTASIS IN PATIENTS WITH UNSTABLE ANGINA AND CORONARY ARTERY BYPASS GRAFTING". Eurasian heart journal, n.º 1 (28 de fevereiro de 2021): 78–86. http://dx.doi.org/10.38109/2225-1685-2021-1-78-86.
Texto completo da fonteSingh, Sukhdeep, Patrick Mai, Justyna Borowiec, Yixin Zhang, Yong Lei e Andreas Schober. "Donor–acceptor Stenhouse adduct-grafted polycarbonate surfaces: selectivity of the reaction for secondary amine on surface". Royal Society Open Science 5, n.º 7 (julho de 2018): 180207. http://dx.doi.org/10.1098/rsos.180207.
Texto completo da fonteAsadian, Mahtab, Ke Vin Chan, Mohammad Norouzi, Silvia Grande, Pieter Cools, Rino Morent e Nathalie De Geyter. "Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds". Nanomaterials 10, n.º 1 (8 de janeiro de 2020): 119. http://dx.doi.org/10.3390/nano10010119.
Texto completo da fonteWahba, Alexander, Gregor Black, Mario Koksch, Gregor Rothe, Jürgen Preuner, Gred Schmitz e Dietrich E. Bimbaum. "Aprotinin Has no Effect on Platelet Activation and Adhesion during Cardiopulmonary Bypass". Thrombosis and Haemostasis 75, n.º 05 (1996): 844–48. http://dx.doi.org/10.1055/s-0038-1650377.
Texto completo da fonteČernáková, L’, D. Kováčik, A. Zahoranová, M. Černák e M. Mazúr. "Surface Modification of Polypropylene Non-Woven Fabrics by Atmospheric-Pressure Plasma Activation Followed by Acrylic Acid Grafting". Plasma Chemistry and Plasma Processing 25, n.º 4 (agosto de 2005): 427–37. http://dx.doi.org/10.1007/s11090-004-3137-4.
Texto completo da fonteTeses / dissertações sobre o assunto "Plasma activation grafting"
Wei, Tianyue. "Modification of terpenoid molecules to enhance antibacterial properties of polymer surfaces". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF065.
Texto completo da fonteEssential oils are potential biosourced candidates to be grafted on polymer surfaces to fight against bacterial infections by either restricting the growth of bacteria (bacteriostatic effect) or killing bacterial cells (bactericidal effect). This thesis deals with the modification of terpenoid molecules intended to be grafted on polymer-activated surfaces. We eager to graft modified EO molecules onto polymer surface through strong covalent bonding, facilitated by plasma treatment technology. Citronellol (CT) and geraniol (GR) were chosen for their antimicrobial activity and were successfully modified to obtain better reactive function towards polymer grafting. They were transformed into CT-oxide and GR-oxide through an accessible and green chemo enzymatic oxidation method. Microbiological tests were undertaken to estimate the antibacterial effects of CT and GR before and after modification. Three bacterial species have been used: Escherichia coli, Staphylococcus aureus and Corynebacterium glutamicum. The results showed that antibacterial effects remained after epoxidation, tested molecules exhibited antibacterial activities by targeting bacterial cell envelopes, disrupting membrane integrity, and altering hydrophobicity. These actions led to the inhibition of bacterial growth or death of the bacteria, as evidenced by Zeta Potential measurements, Scanning Electron Microscopy imaging, and surface energy assessments. Our study conclusively confirmed the antibacterial effectiveness of CT-ox and GR-ox against three bacterial strains. Furthermore, those modified terpenoid molecules have potential to graft on the polymer surface and provide polymer antimicrobial property