Literatura científica selecionada sobre o tema "Plants Effect of stress on"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Plants Effect of stress on".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Plants Effect of stress on"
Arora, Rajeev, Dharmalingam S. Pitchay e Bradford C. Bearce. "EFFECT OF WATER STRESS ON HEAT STRESS TOLERANCE IN GERANIUM". HortScience 31, n.º 6 (outubro de 1996): 915A—915. http://dx.doi.org/10.21273/hortsci.31.6.915a.
Texto completo da fonteGupta, Sonal, e Ashwini A. Waoo. "Effect of salinity stress on phytochemical characteristics of Centella asiatica". Journal of Applied and Natural Science 14, n.º 2 (18 de junho de 2022): 684–91. http://dx.doi.org/10.31018/jans.v14i2.3387.
Texto completo da fonteShevchenko, A. V., I. G. Budzanivska, T. P. Shevchenko e V. P. Polischuk. "Stress caused by plant virus infection in presence of heavy metals". Plant Protection Science 38, SI 2 - 6th Conf EFPP 2002 (31 de dezembro de 2017): 455–57. http://dx.doi.org/10.17221/10522-pps.
Texto completo da fonteKrček, M., P. Slamka, K. Olšovská, M. Brestič e M. Benčíková. "Reduction of drought stress effect in spring barley (Hordeum vulgare L.) by nitrogen fertilization". Plant, Soil and Environment 54, No. 1 (14 de janeiro de 2008): 7–13. http://dx.doi.org/10.17221/2781-pse.
Texto completo da fonteAli-Ahmad, M., e S. M. Basha. "Effect of Water Stress on Composition of Peanut Leaves". Peanut Science 25, n.º 1 (1 de janeiro de 1998): 31–34. http://dx.doi.org/10.3146/i0095-3679-25-1-8.
Texto completo da fonteHandayani, Tri, e Kazuo Watanabe. "The combination of drought and heat stress has a greater effect on potato plants than single stresses". Plant, Soil and Environment 66, No. 4 (30 de abril de 2020): 175–82. http://dx.doi.org/10.17221/126/2020-pse.
Texto completo da fonteAsadova, B. "Salinity Factor Effect on Barley Seedlings Incubation". Bulletin of Science and Practice 8, n.º 1 (15 de janeiro de 2022): 81–85. http://dx.doi.org/10.33619/2414-2948/74/11.
Texto completo da fonteThakur, Jaya, e Bharat Shinde. "Effect of water stress and AM fungi on the growth performance of pea". International Journal of Applied Biology 4, n.º 1 (29 de junho de 2020): 36–43. http://dx.doi.org/10.20956/ijab.v4i1.9446.
Texto completo da fonteKaňová, D., e E. Kula. "The effect of stress factors on birch Betula pendula Roth". Journal of Forest Science 50, No. 9 (11 de janeiro de 2012): 399–404. http://dx.doi.org/10.17221/4636-jfs.
Texto completo da fonteFiliptsova, Halina G., e Vladimir M. Yurin. "Physiological and biochemical mechanisms of plants resistance to oxidative stress under peptide elicitor AtPep1". Journal of the Belarusian State University. Biology, n.º 3 (5 de novembro de 2021): 38–46. http://dx.doi.org/10.33581/2521-1722-2021-3-38-46.
Texto completo da fonteTeses / dissertações sobre o assunto "Plants Effect of stress on"
Eakes, Donald Joseph. "Moisture stress conditioning, potassium nutrition, and tolerance of Salvia splendens 'Bonfire' to moisture stress". Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54350.
Texto completo da fontePh. D.
Le, Fevre Ruth Elizabeth. "Phytate and plant stress responses". Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708218.
Texto completo da fonteChoudhury, Feroza Kaneez. "Rapid Metabolic Response of Plants Exposed to Light Stress". Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157543/.
Texto completo da fonteKalifa, Ali. "Salt stress, and phosphorus absorption by potato plants cv. 'Russet Burbank'". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29727.pdf.
Texto completo da fonteIngarfield, Patricia Jean. "Effect of water stress and arbuscular mycorrhiza on the plant growth and antioxidant potential of Pelargonium reniforme Curtis and Pelargonium sidoides DC". Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2794.
Texto completo da fontePelargoniums have been studied extensively for their medicinal properties. P. reniforme and P. sidoides in particular are proven to possess antimicrobial, antifungal and antibiotic abilities due to their high antioxidant potential from compounds isolated from their tuberous roots. These plants have now been added to the medicine trade market and this is now causing concern for conservationists and they are generally harvested from the wild populations. This study evaluated the effect of water stress alone and in conjunction with arbuscular mycorrhiza on two species of Pelargoniums grown in a soilless medium. The experiment consisted of five different watering regimes which were applied to one hundred plants of each species without inoculation with arbuscular mycorrhiza and to one hundred plants of each species in conjunction with inoculation with AM. All the plants in the experiment were fed with a half-strength, standard Hoagland nutrient solution at varying rates viz. once daily to pot capacity, every three days to pot capacity, every six days to pot capacity, every twelve days to pot capacity and every twenty-four days to pot capacity. The objectives of the study were to measure the nutrient uptake, SPAD-502 levels (chlorophyll production) and metabolite (phenolics) formation of both species, grown under various rates of irrigation and water stress, as well with or without the addition of arbuscular mycorrhiza at planting out. Each treatment consisted of 10 replicates. SPAD-502 levels were measured weekly using a hand held SPAD-502 meter. Determination of nutrient uptake of macronutrients N, K, P, Ca, Mg and Na and micronutrients Cu, Zn, Mn, Al and B were measured from dry plant material at the end of the experiment by Bemlab, 16 Van Der Berg Crescent, Gants Centre, Strand. Plant growth in terms of wet and dry shoot and root weight were measured after harvest. Determination of concentrations of secondary metabolites (phenolic compounds) were assayed and measured spectrophotometrically at the end of the experiment. The highest significant reading of wet shoot weight for P. reniforme was taken in treatments 1 and 2 with and without mycorrhiza i.e. WF1, WF1M, WF2 and WF2M, with the highest mean found in WF1 with no mycorrhiza. This indicates that under high irrigation AM plays no part in plant growth, possibly due to leaching. More research is necessary in this regard. With regard to wet root weight, this was found to be not significant in any of the treatments, other than the longest roots being found in WF4. Measurements for dry root weight showed that WF1,2,3 and 5 were the most significant at P≤ 0.001 significance, with the highest weight found at treatment being WF3 and WF3M. The highest mean of shoot length of the plants was measured in treatment WF2 at moderate watering, but no statistical difference was found with water application and mycorrhiza addition. Nutrient uptake was increased in P. sidoides in all the different watering levels in the experiment except in the uptake of Mg. AM inoculation showed an increase in the uptake of Ca, while absorption of N occurred at higher water availability. K uptake was enhanced by the addition of AM in high water availability and K utilisation decreased as water stress increased. Medium to low watering resulted in higher leaf content in P. sidoides while the interaction between water availability and AM inoculation increased chlorophyll production towards the end of the experiment.
Zhou, Maoqian 1961. "Nitrogen fixation by alfalfa as affected by salt stress and nitrogen levels". Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277231.
Texto completo da fonteZegeer, Abreeza May 1956. "Interactions between saline stress and benzyladenine on chili peppers (Capsicum annuum L.)". Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277069.
Texto completo da fonteWongareonwanakij, Sathaporn. "Effects of water stress and partial soil-drying on senescence of sunflower plants". Title page, contents and summary only, 1995. http://web4.library.adelaide.edu.au/theses/09A/09aw872.pdf.
Texto completo da fonteAttumi, Al-Arbe. "Effect of salt stress on phosphorus and sodium absorptions by soybean plants". Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20242.
Texto completo da fonteMaclear, Athlee. "Identification of cis-elements and transacting factors involved in the abiotic stress responses of plants". Thesis, Rhodes University, 2005. http://hdl.handle.net/10962/d1007236.
Texto completo da fonteKMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
Livros sobre o assunto "Plants Effect of stress on"
M, Orcutt David, e Hale Maynard G, eds. The physiology of plants under stress. New York: Wiley, 1996.
Encontre o texto completo da fonteSir, Fowden Leslie, Mansfield T. A, Stoddart John e Rank Prize Funds, eds. Plant adaptation to environmental stress. London: Chapman & Hall, 1993.
Encontre o texto completo da fonteA, Khan Nafees, e Singh Sarvajeet, eds. Abiotic stress and plant responses. New Delhi: I.K. International Pub. House, 2008.
Encontre o texto completo da fonteShabala, S. Plant stress physiology. Editado por C. A. B. International. Cambridge, MA: CABI, 2012.
Encontre o texto completo da fonteKadukova, Jana. Phytoremediation and stress: Evaluation of heavy metal-induced stress in plants. Hauppauge, N.Y: Nova Science Publishers, 2010.
Encontre o texto completo da fonteK, Panda S., ed. Advances in stress physiology of plants. Jodhpur: Scientific Publishers (India), 2002.
Encontre o texto completo da fonteS, Basra Amarjit, ed. Stress-induced gene expression in plants. Chur, Switzerland: Harwood Academic Publishers, 1994.
Encontre o texto completo da fonteHaryana, Nikhil. Abiotic stress: New research. Hauppauge, N.Y: Nova Science Publisher's, Inc., 2011.
Encontre o texto completo da fonteHeinrich, Sandermann, ed. Molecular ecotoxicology of plants. Berlin: Springer, 2004.
Encontre o texto completo da fonteG, Alscher Ruth, e Cumming Jonathan R, eds. Stress responses in plants: Adaptation and acclimation mechanisms. New York: Wiley-Liss, 1990.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Plants Effect of stress on"
Kaur, Harpreet, Renu Bhardwaj, Vinod Kumar, Anket Sharma, Ravinder Singh e Ashwani Kumar Thukral. "Effect of pesticides on leguminous plants". In Legumes under Environmental Stress, 91–101. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118917091.ch6.
Texto completo da fonteIvanov, Anatoly A. "Response of Wheat Seedlings to Combined Effect of Drought and Salinity". In Stress Responses in Plants, 159–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13368-3_7.
Texto completo da fontePérez-Pastor, Alejandro, M. Carmen Ruiz-Sánchez e María R. Conesa. "Drought stress effect on woody tree yield". In Water Stress and Crop Plants, 356–74. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.ch22.
Texto completo da fonteHajiboland, R. "Effect of Micronutrient Deficiencies on Plants Stress Responses". In Abiotic Stress Responses in Plants, 283–329. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0634-1_16.
Texto completo da fonteKhalid, Muhammad Fasih, Iqra Zakir, Rashid Iqbal Khan, Sobia Irum, Samreen Sabir, Nishat Zafar, Shakeel Ahmad, Mazhar Abbas, Talaat Ahmed e Sajjad Hussain. "Effect of Water Stress (Drought and Waterlogging) on Medicinal Plants". In Medicinal Plants, 169–82. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5611-9_6.
Texto completo da fonteSrivastava, Kavita, Sachidanand Singh, Anupam Singh, Tanvi Jain, Rahul Datta e Abhidha Kohli. "Effect of Temperature (Cold and Hot) Stress on Medicinal Plants". In Medicinal Plants, 153–68. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5611-9_5.
Texto completo da fonteKoshita, Yoshiko. "Effect of Temperature on Fruit Color Development". In Abiotic Stress Biology in Horticultural Plants, 47–58. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55251-2_4.
Texto completo da fonteTripathi, Durgesh Kumar, Swati Singh, Shweta Singh, Devendra Kumar Chauhan, Nawal Kishore Dubey e Rajendra Prasad. "Silicon as a beneficial element to combat the adverse effect of drought in agricultural crops". In Water Stress and Crop Plants, 682–94. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.ch39.
Texto completo da fonteHemati, Arash, Ebrahim Moghiseh, Arian Amirifar, Morteza Mofidi-Chelan e Behnam Asgari Lajayer. "Physiological Effects of Drought Stress in Plants". In Plant Stress Mitigators, 113–24. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7759-5_6.
Texto completo da fonteFlowers, T. S., e A. R. Yeo. "Effects of Salinity on Plant Growth and Crop Yields". In Environmental Stress in Plants, 101–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73163-1_11.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Plants Effect of stress on"
Baranova, E. N. "The effect of edaphic stress factors on plant cell compartments". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-57.
Texto completo da fonteArkhipova, T. N., e E. V. Martynenko. "The effect of hormone producing bacteria on plant growth and stress tolerance". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-48.
Texto completo da fonteKreslavsky, V. D., A. Yu Khudyakova e V. Yu Lyubimov. "The effect of the phytochrome system on the stress resistance of the photosynthetic apparatus". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-237.
Texto completo da fontePonomareva, M. L., e S. N. Ponomarev. "Features of adaptation to winter stress and the effect of proline accumulation in winter cereals". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-362.
Texto completo da fonteEvseeva, N. V., A. Yu Denisova, G. L. Burygin, N. N. Pozdnyakova e O. V. Tkachenko. "Coinoculation effect of potato microclones by rhizosphere bacteria under osmotic stress in vitro". In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.067.
Texto completo da fontePopescu, Monica. "ASCOPHYLLUM NODOSUM SEAWEED EXTRACT EFFECT ON DROUGHT STRESS IN BEAN PLANTS". In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017h/63/s25.017.
Texto completo da fonteOzolina, N. V., V. V. Gurina e I. S. Nesterkina. "The effect of different types of abiotic stress on the dynamics of the content of common sterols of beet tonoplast (Beta vulgaris L.)". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-324.
Texto completo da fonteZeng, Lizhang, e Da Xing. "Alteration in delayed fluorescence characterize the effect of heat stress on plants". In Photonics Asia 2004, editado por Yun-Jiang Rao, Osuk Y. Kwon e Gang-Ding Peng. SPIE, 2005. http://dx.doi.org/10.1117/12.572779.
Texto completo da fonteLukatkin, A. S., D. I. Bashmakov, E. Sh Sharkaeva e A. A. Lukatkin. "Determining the effectiveness of growth regulators in the analysis of the effects of stress factors on plants". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-264.
Texto completo da fontePozhvanov, G. A., E. I. Sharova e S. S. Medvedev. "Redox-dependent reorganization of the actin cytoskeleton in the root of arabidopsis under stress and regulatory effects". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-357.
Texto completo da fonteRelatórios de organizações sobre o assunto "Plants Effect of stress on"
Mosquna, Assaf, e Sean Cutler. Systematic analyses of the roles of Solanum Lycopersicum ABA receptors in environmental stress and development. United States Department of Agriculture, janeiro de 2016. http://dx.doi.org/10.32747/2016.7604266.bard.
Texto completo da fonteHanda, Avtar K., Yuval Eshdat, Avichai Perl, Bruce A. Watkins, Doron Holland e David Levy. Enhancing Quality Attributes of Potato and Tomato by Modifying and Controlling their Oxidative Stress Outcome. United States Department of Agriculture, maio de 2004. http://dx.doi.org/10.32747/2004.7586532.bard.
Texto completo da fonteKirova, Elisaveta. Effect of Nitrogen Nutrition Source on Antioxidant Defense System of Soybean Plants Subjected to Salt Stress. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, fevereiro de 2020. http://dx.doi.org/10.7546/crabs.2020.02.09.
Texto completo da fonteAlchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li e A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, novembro de 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Texto completo da fonteChristopher, David A., e Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, maio de 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Texto completo da fonteFromm, Hillel, e Joe Poovaiah. Calcium- and Calmodulin-Mediated Regulation of Plant Responses to Stress. United States Department of Agriculture, setembro de 1993. http://dx.doi.org/10.32747/1993.7568096.bard.
Texto completo da fonteSeginer, Ido, Daniel H. Willits, Michael Raviv e Mary M. Peet. Transpirational Cooling of Greenhouse Crops. United States Department of Agriculture, março de 2000. http://dx.doi.org/10.32747/2000.7573072.bard.
Texto completo da fonteAmir, Rachel, David J. Oliver, Gad Galili e Jacline V. Shanks. The Role of Cysteine Partitioning into Glutathione and Methionine Synthesis During Normal and Stress Conditions. United States Department of Agriculture, janeiro de 2013. http://dx.doi.org/10.32747/2013.7699850.bard.
Texto completo da fonteWolf, Shmuel, e William J. Lucas. Involvement of the TMV-MP in the Control of Carbon Metabolism and Partitioning in Transgenic Plants. United States Department of Agriculture, outubro de 1999. http://dx.doi.org/10.32747/1999.7570560.bard.
Texto completo da fonteJander, Georg, Gad Galili e Yair Shachar-Hill. Genetic, Genomic and Biochemical Analysis of Arabidopsis Threonine Aldolase and Associated Molecular and Metabolic Networks. United States Department of Agriculture, janeiro de 2010. http://dx.doi.org/10.32747/2010.7696546.bard.
Texto completo da fonte