Artigos de revistas sobre o tema "Plants, Effect of salt on"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Plants, Effect of salt on".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Khushnudovna, Khojaniyazova Barno. "ТHE EFFECT OF DIFFERENT ENVIRONMENTAL SALT LEVELS ON AUTUMN WHEAT GROWTH". European International Journal of Multidisciplinary Research and Management Studies 02, n.º 04 (1 de abril de 2022): 29–32. http://dx.doi.org/10.55640/eijmrms-02-04-07.
Texto completo da fonteZuo, Zhiyu, Junhong Guo, Caiyun Xin, Shengqun Liu, Hanping Mao, Yongjun Wang e Xiangnan Li. "Salt acclimation induced salt tolerance in wild-type and abscisic acid-deficient mutant barley". Plant, Soil and Environment 65, No. 10 (5 de novembro de 2019): 516–21. http://dx.doi.org/10.17221/506/2019-pse.
Texto completo da fonteGupta, Sonal, e Ashwini A. Waoo. "Effect of salinity stress on phytochemical characteristics of Centella asiatica". Journal of Applied and Natural Science 14, n.º 2 (18 de junho de 2022): 684–91. http://dx.doi.org/10.31018/jans.v14i2.3387.
Texto completo da fonteZuo, Zhiyu, Fan Ye, Zongshuai Wang, Shuxin Li, Hui Li, Junhong Guo, Hanping Mao, Xiancan Zhu e Xiangnan Li. "Salt acclimation induced salt tolerance in wild-type and chlorophyl b-deficient mutant wheat". Plant, Soil and Environment 67, No. 1 (11 de janeiro de 2021): 26–32. http://dx.doi.org/10.17221/429/2020-pse.
Texto completo da fonteHernández, Jose A., Ana Belén Aguilar, Bruno Portillo, Elvira López-Gómez, Jorge Mataix Beneyto e Manuel F. García-Legaz. "The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants". Functional Plant Biology 30, n.º 11 (2003): 1127. http://dx.doi.org/10.1071/fp03098.
Texto completo da fonteTootoonchi, Mohsen, e Lyn A. Gettys. "Testing salt stress on aquatic plants: effect of salt source and substrate". Aquatic Ecology 53, n.º 3 (9 de abril de 2019): 325–34. http://dx.doi.org/10.1007/s10452-019-09692-6.
Texto completo da fonteYan, Feiyu, Hongliang Zhao, Longmei Wu, Zhiwei Huang, Yuan Niu, Bo Qi, Linqing Zhang et al. "Basic Cognition of Melatonin Regulation of Plant Growth under Salt Stress: A Meta-Analysis". Antioxidants 11, n.º 8 (19 de agosto de 2022): 1610. http://dx.doi.org/10.3390/antiox11081610.
Texto completo da fonteDekhil, Maha, Mohamed Ibrahim, Hani Saudy e Sanaa Zaghloul. "EFFECT OF SELENIUM ON SALT TOLERANCE IN MAIZE PLANTS". Journal of Environmental Science 49, n.º 1 (1 de janeiro de 2020): 2–26. http://dx.doi.org/10.21608/jes.2020.150455.
Texto completo da fonteVlasenko, Olga A., Natalia L. Kurachenko, Olga A. Ulyanova e Ekaterina Yu Casanova. "NATURAL SALT SOLUTION EFFECT ON BLUEGRASS-WHEATGRASS PLANTS ASSOCIATION". Bulletin of KSAU, n.º 9 (2021): 100–107. http://dx.doi.org/10.36718/1819-4036-2021-9-100-107.
Texto completo da fonteLinić, Ida, Selma Mlinarić, Lidija Brkljačić, Iva Pavlović, Ana Smolko e Branka Salopek-Sondi. "Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance". Plants 10, n.º 11 (29 de outubro de 2021): 2346. http://dx.doi.org/10.3390/plants10112346.
Texto completo da fonteZongshuai, Wang, Li Xiangnan, Zhu Xiancan, Liu Shengqun, Song Fengbin, Liu Fulai, Wang Yang et al. "Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat". Plant, Soil and Environment 63, No. 7 (19 de julho de 2017): 307–14. http://dx.doi.org/10.17221/287/2017-pse.
Texto completo da fonteKarlidag, Huseyin, Ertan Yildirim e Metin Turan. "Salicylic acid ameliorates the adverse effect of salt stress on strawberry". Scientia Agricola 66, n.º 2 (abril de 2009): 180–87. http://dx.doi.org/10.1590/s0103-90162009000200006.
Texto completo da fonteCHALBI, Arbia, Besma SGHAIER-HAMMAMI, Narjes BAAZAOUI, Sofiene B. M. HAMMAMI, Hatem BEN-JOUIRA, Pedro GARCÍA-CAPARRÓS, Naceur DJÉBALI et al. "Comparative study of the effect of salt stress, Alternaria alternata attack or combined stress on the Cakile maritima growth and physiological performance". Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49, n.º 3 (28 de setembro de 2021): 12446. http://dx.doi.org/10.15835/nbha49312446.
Texto completo da fonteALZAHRANI, Othman, Heba ABOUSEADAA, Taghreed K. ABDELMONEIM, Mohammed A. ALSHEHRI, Mohamed EL-MOGY, Hossam S. EL-BELTAGI e Mohamed A. M. ATIA. "Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach". Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49, n.º 2 (10 de maio de 2021): 12310. http://dx.doi.org/10.15835/nbha49212310.
Texto completo da fonteTCV, Do, e Scherer HW. "Compost as growing media component for salt-sensitive plants". Plant, Soil and Environment 59, No. 5 (22 de abril de 2013): 214–20. http://dx.doi.org/10.17221/804/2012-pse.
Texto completo da fonteKrausko, Miroslav, Zuzana Kusá, Darina Peterková, Mária Labajová, Ajay Kumar, Andrej Pavlovič, Michaela Bačovčinová, Martin Bačkor e Ján Jásik. "The Absence of the AtSYT1 Function Elevates the Adverse Effect of Salt Stress on Photosynthesis in Arabidopsis". International Journal of Molecular Sciences 23, n.º 3 (3 de fevereiro de 2022): 1751. http://dx.doi.org/10.3390/ijms23031751.
Texto completo da fonteTuran, Metin, Tuba Arjumend, Ertan Yıldırım, Melek Ekinci e Betül Ince. "Role of Exogenous Melatonin, Hydrogen Sulfide and Nitric Oxide on Organic Acid Content of Eruca sativa L. under Salt Stress". International Journal of Scientific Research and Management 9, n.º 11 (30 de novembro de 2021): 330–35. http://dx.doi.org/10.18535/ijsrm/v9i11.ah01.
Texto completo da fonteChen, Haoran, Sylvie Renault e John Markham. "The Effect of Frankia and Hebeloma crustiliniforme on Alnus alnobetula subsp. Crispa Growing in Saline Soil". Plants 11, n.º 14 (16 de julho de 2022): 1860. http://dx.doi.org/10.3390/plants11141860.
Texto completo da fonteShirokikh, I. G., S. Yu Ogorodnikova, Ya I. Nazarova e O. N. Shupletsova. "Effect of salt stress on plants of wild-type Nicotiana tabacum L. and transformants with a choline oxidase (codA) gene". Proceedings on applied botany, genetics and breeding 183, n.º 1 (15 de abril de 2022): 86–94. http://dx.doi.org/10.30901/2227-8834-2022-1-86-94.
Texto completo da fonteEl-Khashab, A. M. Abou, A. F. El-Sammak, A. A. Elaidy, M. I. Salama e M. Rieger. "Paclobutrazol Reduces Some Negative Effects of Salt Stress in Peach". Journal of the American Society for Horticultural Science 122, n.º 1 (janeiro de 1997): 43–46. http://dx.doi.org/10.21273/jashs.122.1.43.
Texto completo da fonteLaman, N. A., K. R. Kem, V. I. Anikeev, V. N. Zhabinskii e N. B. Khripach. "Features of the brassinosteroid effect on plants under salt stress". Doklady of the National Academy of Sciences of Belarus 66, n.º 2 (6 de maio de 2022): 199–205. http://dx.doi.org/10.29235/1561-8323-2022-66-2-199-205.
Texto completo da fonteMassai, Jacob Tchima, Hamida Aminatou, Jean Boris Sounya, Dieudonné Ranava, Sebastien Vondou Vondou, Ousman Adjoudji e Palou Madi Oumarou. "Effect of salt on seed germination and plant growth of Anacardium occidentale". International Journal of Biological and Chemical Sciences 15, n.º 4 (18 de novembro de 2021): 1563–72. http://dx.doi.org/10.4314/ijbcs.v15i4.20.
Texto completo da fonteHossain, M. M., e H. Nonami. "Effect of salt stress on physiological response of tomato fruit grown in hydroponic culture system". Horticultural Science 39, No. 1 (16 de fevereiro de 2012): 26–32. http://dx.doi.org/10.17221/63/2011-hortsci.
Texto completo da fonteGiambalvo, Dario, Gaetano Amato, Davide Borgia, Rosolino Ingraffia, Calogero Librici, Antonella Lo Porto, Guglielmo Puccio, Paolo Ruisi e Alfonso S. Frenda. "Nitrogen Availability Drives Mycorrhizal Effects on Wheat Growth, Nitrogen Uptake and Recovery under Salt Stress". Agronomy 12, n.º 11 (11 de novembro de 2022): 2823. http://dx.doi.org/10.3390/agronomy12112823.
Texto completo da fonteAugé, Robert, Keunho Cho, Jean Stutz e Heather Toler. "(319) Mycorrhizal Symbiosis and Response of Sorghum Plants to Combined Drought and Salt Stresses". HortScience 40, n.º 4 (julho de 2005): 1037C—1037. http://dx.doi.org/10.21273/hortsci.40.4.1037c.
Texto completo da fonteHatterman-Valenti, Harlene, Nick E. Christians e Micheal D. K. Owen. "Effect of 2,4-D and Triclopyr on Annual Bedding Plants". Journal of Environmental Horticulture 13, n.º 3 (1 de setembro de 1995): 122–25. http://dx.doi.org/10.24266/0738-2898-13.3.122.
Texto completo da fonteKekere, Otitoloju. "Effect of Air-Borne Salinity on the Growth and Appearance of the Tropical Perennial Strandline Plant, Commelina erecta subsp. maritima (C.V. Morton) C.V. Morton". Sustainable Agriculture Research 3, n.º 2 (31 de março de 2014): 77. http://dx.doi.org/10.5539/sar.v3n2p77.
Texto completo da fonteAcosta-Motos, Jose, Maria Ortuño, Agustina Bernal-Vicente, Pedro Diaz-Vivancos, Maria Sanchez-Blanco e Jose Hernandez. "Plant Responses to Salt Stress: Adaptive Mechanisms". Agronomy 7, n.º 1 (23 de fevereiro de 2017): 18. http://dx.doi.org/10.3390/agronomy7010018.
Texto completo da fonteFujita, Kounosuke, Junki Ito, Pravat K. Mohapatra, Hirofumi Saneoka, Kei Lee, Heilil Kurban, Kouji Kawai e Katsumi Ohkura. "Circadian rhythm of stem and fruit diameter dynamics of Japanesepersimmon (Diospyrus kaki Thunb.) is affected by deficiency of water in saline environments". Functional Plant Biology 30, n.º 7 (2003): 747. http://dx.doi.org/10.1071/fp03020.
Texto completo da fonteZhang, Geng, Yuanhua Wang, Kai Wu, Qing Zhang, Yingna Feng, Yu Miao e Zhiming Yan. "Exogenous Application of Chitosan Alleviate Salinity Stress in Lettuce (Lactuca sativa L.)". Horticulturae 7, n.º 10 (24 de setembro de 2021): 342. http://dx.doi.org/10.3390/horticulturae7100342.
Texto completo da fonteKoleška, Ivana, Dino Hasanagić, Rodoljub Oljača, Vida Todorović, Borut Bosančić e Senad Murtić. "The Effect of Grafting on Calcium Influx in Tomato Fruits under Salt Stress Conditions". АГРОЗНАЊЕ 20, n.º 2 (5 de novembro de 2019): 65. http://dx.doi.org/10.7251/agren1902065k.
Texto completo da fonteCappellari, Lorena del Rosario, Julieta Chiappero, Tamara Belén Palermo, Walter Giordano e Erika Banchio. "Volatile Organic Compounds from Rhizobacteria Increase the Biosynthesis of Secondary Metabolites and Improve the Antioxidant Status in Mentha piperita L. Grown under Salt Stress". Agronomy 10, n.º 8 (29 de julho de 2020): 1094. http://dx.doi.org/10.3390/agronomy10081094.
Texto completo da fonteSekmen Cetinel, Askim Hediye, Azime Gokce, Erhan Erdik, Barbaros Cetinel e Nedim Cetinkaya. "The Effect of Trichoderma citrinoviride Treatment under Salinity Combined to Rhizoctonia solani Infection in Strawberry (Fragaria x ananassa Duch.)". Agronomy 11, n.º 8 (10 de agosto de 2021): 1589. http://dx.doi.org/10.3390/agronomy11081589.
Texto completo da fonteMatei, Andreea Natalia, Mohamad Al Hassan, Monica Boscaiu, Valeriu Alexiu e Oscar Vicente. "Responses to Drought and Salinity in the Endangered Species Ligularia sibirica (L.) Cass." Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 73, n.º 2 (30 de novembro de 2016): 252. http://dx.doi.org/10.15835/buasvmcn-hort:12286.
Texto completo da fonteHamada, A., e A. Al-Hakimi. "Exogenous ascorbic acid or thiamine increases the resistance of sunflower and maize plants to salt stress". Acta Agronomica Hungarica 57, n.º 3 (1 de setembro de 2009): 335–47. http://dx.doi.org/10.1556/aagr.57.2009.3.8.
Texto completo da fonteStadnik, Barbara, Renata Tobiasz-Salach e Marzena Mazurek. "Effect of Silicon on Oat Salinity Tolerance: Analysis of the Epigenetic and Physiological Response of Plants". Agriculture 13, n.º 1 (28 de dezembro de 2022): 81. http://dx.doi.org/10.3390/agriculture13010081.
Texto completo da fonteCenk PAŞA. "The response of some calendula cultivars (Calendula officinalis L.) to salt during the germination period". GSC Biological and Pharmaceutical Sciences 21, n.º 2 (30 de novembro de 2022): 263–68. http://dx.doi.org/10.30574/gscbps.2022.21.2.0450.
Texto completo da fonteHancı, Fatih, e Gizem Tuncer. "How Do Foliar Application of Melatonin and L-Tryptophan Affect Lettuce Growth Parameters Under Salt Stress?" Turkish Journal of Agriculture - Food Science and Technology 8, n.º 4 (27 de abril de 2020): 960–64. http://dx.doi.org/10.24925/turjaf.v8i4.960-964.3224.
Texto completo da fonteNawaz, Khalid, Khalid Hussain, Ejaz Hussain Siddiqi e Abdul Majeed. "Effect of Na2SO4 Salinity on Brinjal (Solanum melongena)". Lahore Garrison University Journal of Life Sciences 2, n.º 3 (22 de abril de 2020): 176–89. http://dx.doi.org/10.54692/lgujls.2018.020329.
Texto completo da fonteSá, Francisco V. da S., Marcos E. B. Brito, Luderlândio de A. Silva, Rômulo C. L. Moreira, Emanoela P. de Paiva e Lauter S. Souto. "Exogenous application of phytohormones mitigates the effect of salt stress on Carica papaya plants". Revista Brasileira de Engenharia Agrícola e Ambiental 24, n.º 3 (março de 2020): 170–75. http://dx.doi.org/10.1590/1807-1929/agriambi.v24n3p170-175.
Texto completo da fonteCarillo, Petronia, Gabriella Mastrolonardo, Francesco Nacca e Amodio Fuggi. "Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity". Functional Plant Biology 32, n.º 3 (2005): 209. http://dx.doi.org/10.1071/fp04184.
Texto completo da fonteMatoh, Tōru, Patcharaporn Kairusmee e Eiichi Takahashi. "Salt-Induced Damage to Rice Plants and Alleviation Effect of Silicate". Soil Science and Plant Nutrition 32, n.º 2 (junho de 1986): 295–304. http://dx.doi.org/10.1080/00380768.1986.10557506.
Texto completo da fonte王, 晗. "Effect of Salt Stress on Seed Germination of Eight Woody Plants". Botanical Research 09, n.º 03 (2020): 149–55. http://dx.doi.org/10.12677/br.2020.93018.
Texto completo da fonteArshad, Muhammad, Muhammad Kaleem Ullah, Asad Iqbal, Muhammad Usman Tariq e Ahmad Waqas. "Effect of Saline Water Irrigation and Dilution of Salts on Water Management Water in Green Pepper". Pakistan Journal of Engineering and Technology 4, n.º 4 (16 de dezembro de 2021): 15–22. http://dx.doi.org/10.51846/vol4iss4pp15-22.
Texto completo da fonteAbdelnour, Sameh A., Mohamed E. Abd El-Hack, Ahmed E. Noreldin, Gaber Elsaber Batiha, Amani Magdy Beshbishy, Husein Ohran, Asmaa F. Khafaga, Sarah I. Othman, Ahmed A. Allam e Ayman A. Swelum. "High Salt Diet Affects the Reproductive Health in Animals: An Overview". Animals 10, n.º 4 (31 de março de 2020): 590. http://dx.doi.org/10.3390/ani10040590.
Texto completo da fonteE. Y Henry, Eunice, Eliane Kinsou, Armel C. G. Mensah, Françoise Assogba Komlan e Christophe Bernard Gandonou. "Réponse des plantes de tomate (Lycopersicon esculentum Mill.) cultivées sous stress salin à une application exogène de calcium et de potassium". Journal of Applied Biosciences 159 (31 de março de 2021): 16363–70. http://dx.doi.org/10.35759/jabs.159.1.
Texto completo da fonteE. Y Henry, Eunice, Eliane Kinsou, Armel C. G. Mensah, Françoise Assogba Komlan e Christophe Bernard Gandonou. "Réponse des plantes de tomate (Lycopersicon esculentum Mill.) cultivées sous stress salin à une application exogène de calcium et de potassium". Journal of Applied Biosciences 159 (31 de março de 2021): 16363–70. http://dx.doi.org/10.35759/jabs.159.1.
Texto completo da fonteSinger, Catherine K., e Chris A. Martin. "Effect of Landscape Mulches and Drip Irrigation on Transplant Establishment and Growth of Three North American Desert Native Plants". Journal of Environmental Horticulture 27, n.º 3 (1 de setembro de 2009): 166–70. http://dx.doi.org/10.24266/0738-2898-27.3.166.
Texto completo da fonteBiswas, Shreyasee, Monika Koul e Ashok Kumar Bhatnagar. "Effect of Salt, Drought and Metal Stress on Essential Oil Yield and Quality in Plants". Natural Product Communications 6, n.º 10 (outubro de 2011): 1934578X1100601. http://dx.doi.org/10.1177/1934578x1100601036.
Texto completo da fonteJALAL, Rewaa S., e Aala A. ABULFARAJ. "Exogenous application of agmatine improves water stress and salinity stress tolerance in turnip (Brassica rapa L.)". Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50, n.º 1 (10 de fevereiro de 2022): 12601. http://dx.doi.org/10.15835/nbha50112601.
Texto completo da fonte