Artigos de revistas sobre o tema "Placental physiology"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Placental physiology".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Assad, R. S., F. Y. Lee e F. L. Hanley. "Placental compliance during fetal extracorporeal circulation". Journal of Applied Physiology 90, n.º 5 (1 de maio de 2001): 1882–86. http://dx.doi.org/10.1152/jappl.2001.90.5.1882.
Texto completo da fonteVaughan, Owen R., Fredrick Thompson, Ramón A. Lorca, Colleen G. Julian, Theresa L. Powell, Lorna G. Moore e Thomas Jansson. "Effect of high altitude on human placental amino acid transport". Journal of Applied Physiology 128, n.º 1 (1 de janeiro de 2020): 127–33. http://dx.doi.org/10.1152/japplphysiol.00691.2019.
Texto completo da fonteTaher, Shèdy, Yamilette Borja, Lucía Cabanela, Vincent J. Costers, Morgan Carson-Marino, Julie C. Bailes, Biswadeep Dhar et al. "Cholecystokinin, gastrin, cholecystokinin/gastrin receptors, and bitter taste receptor TAS2R14: trophoblast expression and signaling". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 316, n.º 5 (1 de maio de 2019): R628—R639. http://dx.doi.org/10.1152/ajpregu.00153.2018.
Texto completo da fonteRampon, Christine, Stéphanie Bouillot, Adriana Climescu-Haulica, Marie-Hélène Prandini, Francine Cand, Yves Vandenbrouck e Philippe Huber. "Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta". Physiological Genomics 34, n.º 2 (julho de 2008): 193–204. http://dx.doi.org/10.1152/physiolgenomics.00220.2007.
Texto completo da fonteGibbens, Jacob, Shauna-Kay Spencer, Lucia Solis, Teylor Bowles, Patrick B. Kyle, Jamie L. Szczepanski, John Polk Dumas, Reanna Robinson e Kedra Wallace. "Fas ligand neutralization attenuates hypertension, endothelin-1, and placental inflammation in an animal model of HELLP syndrome". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 319, n.º 2 (1 de agosto de 2020): R195—R202. http://dx.doi.org/10.1152/ajpregu.00272.2019.
Texto completo da fonteFlores-Pliego, Arturo, Jael Miranda, Sara Vega-Torreblanca, Yolotzin Valdespino-Vázquez, Cecilia Helguera-Repetto, Aurora Espejel-Nuñez, Héctor Borboa-Olivares et al. "Molecular Insights into the Thrombotic and Microvascular Injury in Placental Endothelium of Women with Mild or Severe COVID-19". Cells 10, n.º 2 (10 de fevereiro de 2021): 364. http://dx.doi.org/10.3390/cells10020364.
Texto completo da fonteMarkovic, Stefan, Anne Fages, Tangi Roussel, Ron Hadas, Alexander Brandis, Michal Neeman e Lucio Frydman. "Placental physiology monitored by hyperpolarized dynamic 13C magnetic resonance". Proceedings of the National Academy of Sciences 115, n.º 10 (14 de fevereiro de 2018): E2429—E2436. http://dx.doi.org/10.1073/pnas.1715175115.
Texto completo da fonteShanes, Elisheva D., Leena B. Mithal, Sebastian Otero, Hooman A. Azad, Emily S. Miller e Jeffery A. Goldstein. "Placental Pathology in COVID-19". American Journal of Clinical Pathology 154, n.º 1 (22 de maio de 2020): 23–32. http://dx.doi.org/10.1093/ajcp/aqaa089.
Texto completo da fonteSelvaratnam, Johanna, Haiyan Guan, James Koropatnick e Kaiping Yang. "Metallothionein-I- and -II-deficient mice display increased susceptibility to cadmium-induced fetal growth restriction". American Journal of Physiology-Endocrinology and Metabolism 305, n.º 6 (15 de setembro de 2013): E727—E735. http://dx.doi.org/10.1152/ajpendo.00157.2013.
Texto completo da fonteTissot van Patot, M. C., J. Bendrick-Peart, V. E. Beckey, N. Serkova e L. Zwerdlinger. "Greater vascularity, lowered HIF-1/DNA binding, and elevated GSH as markers of adaptation to in vivo chronic hypoxia". American Journal of Physiology-Lung Cellular and Molecular Physiology 287, n.º 3 (setembro de 2004): L525—L532. http://dx.doi.org/10.1152/ajplung.00203.2003.
Texto completo da fonteOsifo, E. O., e V. C. Ezeuko. "Histological Assessment of Placental Development Following Intrauterine Exposure to Caffeine in Adult Wistar Rats". Journal of Applied Sciences and Environmental Management 28, n.º 4 (29 de abril de 2024): 1115–20. http://dx.doi.org/10.4314/jasem.v28i4.11.
Texto completo da fonteSchanton, Malena, Julieta L. Maymó, Antonio Pérez-Pérez, Víctor Sánchez-Margalet e Cecilia L. Varone. "Involvement of leptin in the molecular physiology of the placenta". Reproduction 155, n.º 1 (janeiro de 2018): R1—R12. http://dx.doi.org/10.1530/rep-17-0512.
Texto completo da fonteGordon, Zoya, Osnat Eytan, Ariel J. Jaffa e David Elad. "Hemodynamic analysis of Hyrtl anastomosis in human placenta". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, n.º 2 (fevereiro de 2007): R977—R982. http://dx.doi.org/10.1152/ajpregu.00410.2006.
Texto completo da fontePanigel, M. "Placental Physiology". Placenta 7, n.º 2 (março de 1986): 188. http://dx.doi.org/10.1016/s0143-4004(86)80010-8.
Texto completo da fonteGardner, Sarah, Jennifer L. Grindstaff e Polly Campbell. "Placental genotype affects early postpartum maternal behaviour". Royal Society Open Science 6, n.º 9 (18 de setembro de 2019): 190732. http://dx.doi.org/10.1098/rsos.190732.
Texto completo da fonteAnthony, Russell V., Amelia R. Tanner, Victoria C. Kennedy, Quinton A. Winger e Paul J. Rozance. "9 Randel Lecture: In Vivo investigation of pregnancy Physiology". Journal of Animal Science 102, Supplement_1 (1 de março de 2024): 52–53. http://dx.doi.org/10.1093/jas/skae019.063.
Texto completo da fonteZhao, Fusheng, Fang Lei, Xiang Yan, Senfeng Zhang, Wen Wang e Yu Zheng. "Protective Effects of Hydrogen Sulfide Against Cigarette Smoke Exposure-Induced Placental Oxidative Damage by Alleviating Redox Imbalance via Nrf2 Pathway in Rats". Cellular Physiology and Biochemistry 48, n.º 5 (2018): 1815–28. http://dx.doi.org/10.1159/000492504.
Texto completo da fonteWilson, Rebecca L., Weston Troja, Emily K. Sumser, Alec Maupin, Kristin Lampe e Helen N. Jones. "Insulin-like growth factor 1 signaling in the placenta requires endothelial nitric oxide synthase to support trophoblast function and normal fetal growth". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 320, n.º 5 (1 de maio de 2021): R653—R662. http://dx.doi.org/10.1152/ajpregu.00250.2020.
Texto completo da fonteBainbridge, Shannon A., e Graeme N. Smith. "The effect of nicotine on in vitro placental perfusion pressure". Canadian Journal of Physiology and Pharmacology 84, n.º 8-9 (setembro de 2006): 953–57. http://dx.doi.org/10.1139/y06-037.
Texto completo da fonteShaw, A. J., M. Z. Mughal, M. J. Maresh e C. P. Sibley. "Sodium-dependent magnesium transport across in situ perfused rat placenta". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 261, n.º 2 (1 de agosto de 1991): R369—R372. http://dx.doi.org/10.1152/ajpregu.1991.261.2.r369.
Texto completo da fonteWillis, D. M., J. P. O'Grady, J. J. Faber e K. L. Thornburg. "Diffusion permeability of cyanocobalamin in human placenta". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 250, n.º 3 (1 de março de 1986): R459—R464. http://dx.doi.org/10.1152/ajpregu.1986.250.3.r459.
Texto completo da fonteShearman, Lauren P., Alison M. McReynolds, Feng C. Zhou e Jerrold S. Meyer. "Relationship between [125I]RTI-55-labeled cocaine binding sites and the serotonin transporter in rat placenta". American Journal of Physiology-Cell Physiology 275, n.º 6 (1 de dezembro de 1998): C1621—C1629. http://dx.doi.org/10.1152/ajpcell.1998.275.6.c1621.
Texto completo da fonteForstner, Désirée, Jacqueline Guettler e Martin Gauster. "Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts". International Journal of Molecular Sciences 22, n.º 19 (3 de outubro de 2021): 10732. http://dx.doi.org/10.3390/ijms221910732.
Texto completo da fonteBarreto, Rodrigo da Silva Nunes, Ana Claudia Oliveira Carreira, Mônica Duarte da Silva, Leticia Alves Fernandes, Rafaela Rodrigues Ribeiro, Gustavo Henrique Doná Rodrigues Almeida, Bruna Tassia dos Santos Pantoja, Milton Yutaka Nishiyama Junior e Maria Angelica Miglino. "Mice Placental ECM Components May Provide A Three-Dimensional Placental Microenvironment". Bioengineering 10, n.º 1 (22 de dezembro de 2022): 16. http://dx.doi.org/10.3390/bioengineering10010016.
Texto completo da fonteSIMCHENKO, A. V., O. A. ALEXEY e A. A. KUPRASHVILI. "MITOCHONDRIAL DYSFUNCTION IN THE GENESIS OF PLACENTAL PATHOLOGY: PERINATAL OUTCOMES". MODERN PERINATAL MEDICAL TECHNOLOGIES IN SOLVING THE PROBLEM OF DEMOGRAPHIC SECURITY, n.º 17 (dezembro de 2024): 357–61. https://doi.org/10.63030/2307-4795/2024.17.p.24.
Texto completo da fonteHata, Toshiyuki, e Sarah Cajusay-Velasco. "Three-dimensional Power Doppler Ultrasound Study of the Placenta". Donald School Journal of Ultrasound in Obstetrics and Gynecology 8, n.º 4 (2014): 400–409. http://dx.doi.org/10.5005/jp-journals-10009-1380.
Texto completo da fonteVisiedo, Francisco, Fernando Bugatto, Viviana Sánchez, Irene Cózar-Castellano, Jose L. Bartha e Germán Perdomo. "High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta". American Journal of Physiology-Endocrinology and Metabolism 305, n.º 2 (15 de julho de 2013): E205—E212. http://dx.doi.org/10.1152/ajpendo.00032.2013.
Texto completo da fonteSchäffer, Leonhard, Johannes Vogel, Christian Breymann, Max Gassmann e Hugo H. Marti. "Preserved placental oxygenation and development during severe systemic hypoxia". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 290, n.º 3 (março de 2006): R844—R851. http://dx.doi.org/10.1152/ajpregu.00237.2005.
Texto completo da fonteMagnusson-Olsson, Anne Liese, Susanne Lager, Bo Jacobsson, Thomas Jansson e Theresa L. Powell. "Effect of maternal triglycerides and free fatty acids on placental LPL in cultured primary trophoblast cells and in a case of maternal LPL deficiency". American Journal of Physiology-Endocrinology and Metabolism 293, n.º 1 (julho de 2007): E24—E30. http://dx.doi.org/10.1152/ajpendo.00571.2006.
Texto completo da fontePaterson, P. G., B. Sarkar e S. H. Zlotkin. "The effect of zinc levels in fetal circulation on zinc clearance across the in situ perfused guinea pig placenta". Canadian Journal of Physiology and Pharmacology 68, n.º 11 (1 de novembro de 1990): 1401–6. http://dx.doi.org/10.1139/y90-213.
Texto completo da fontede Vrijer, Barbra, Timothy R. H. Regnault, Randall B. Wilkening, Giacomo Meschia e Frederick C. Battaglia. "Placental uptake and transport of ACP, a neutral nonmetabolizable amino acid, in an ovine model of fetal growth restriction". American Journal of Physiology-Endocrinology and Metabolism 287, n.º 6 (dezembro de 2004): E1114—E1124. http://dx.doi.org/10.1152/ajpendo.00259.2004.
Texto completo da fonteMathias, Anita A., Jane Hitti e Jashvant D. Unadkat. "P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 289, n.º 4 (outubro de 2005): R963—R969. http://dx.doi.org/10.1152/ajpregu.00173.2005.
Texto completo da fonteMandò, C., C. De Palma, T. Stampalija, G. M. Anelli, M. Figus, C. Novielli, F. Parisi, E. Clementi, E. Ferrazzi e I. Cetin. "Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia". American Journal of Physiology-Endocrinology and Metabolism 306, n.º 4 (15 de fevereiro de 2014): E404—E413. http://dx.doi.org/10.1152/ajpendo.00426.2013.
Texto completo da fonteCastillo-Castrejon, Marisol, Thomas Jansson e Theresa L. Powell. "No evidence of attenuation of placental insulin-stimulated Akt phosphorylation and amino acid transport in maternal obesity and gestational diabetes mellitus". American Journal of Physiology-Endocrinology and Metabolism 317, n.º 6 (1 de dezembro de 2019): E1037—E1049. http://dx.doi.org/10.1152/ajpendo.00196.2019.
Texto completo da fontedo Imperio, Guinever Eustaquio, Enrrico Bloise, Mohsen Javam, Phetcharawan Lye, Andrea Constantinof, Caroline Dunk, Fernando Marcos dos Reis et al. "Chorioamnionitis Induces a Specific Signature of Placental ABC Transporters Associated with an Increase of miR-331-5p in the Human Preterm Placenta". Cellular Physiology and Biochemistry 45, n.º 2 (2018): 591–604. http://dx.doi.org/10.1159/000487100.
Texto completo da fonteDas, Utpala G., Jing He, Richard A. Ehrhardt, William W. Hay e Sherin U. Devaskar. "Time-dependent physiological regulation of ovine placental GLUT-3 glucose transporter protein". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 279, n.º 6 (1 de dezembro de 2000): R2252—R2261. http://dx.doi.org/10.1152/ajpregu.2000.279.6.r2252.
Texto completo da fonteSoliman, Natasha. "HOW IT WORKS 5: PHYSIOLOGICAL BIRTH OF THE PLACENTA". Practising Midwife 27, n.º 02 (1 de março de 2024): 12–15. http://dx.doi.org/10.55975/nuap7898.
Texto completo da fonteSidle, Elizabeth H., Richard Casselman e Graeme N. Smith. "Effect of cigarette smoke on placental antioxidant enzyme expression". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293, n.º 2 (agosto de 2007): R754—R758. http://dx.doi.org/10.1152/ajpregu.00505.2006.
Texto completo da fonteMandò, Chiara, Valeria M. Savasi, Gaia M. Anelli, Silvia Corti, Anaïs Serati, Fabrizia Lisso, Chiara Tasca, Chiara Novielli e Irene Cetin. "Mitochondrial and Oxidative Unbalance in Placentas from Mothers with SARS-CoV-2 Infection". Antioxidants 10, n.º 10 (24 de setembro de 2021): 1517. http://dx.doi.org/10.3390/antiox10101517.
Texto completo da fonteCorrêa, Isis Paloppi, Rodrigo Ruano, Nilton Hideto Takiuti, Rossana Pulcinelli Vieira Francisco, Estela Bevilacqua e Marcelo Zugaib. "Expression of angiogenic factors in placenta of stressed rats". Reproduction, Fertility and Development 24, n.º 6 (2012): 851. http://dx.doi.org/10.1071/rd11202.
Texto completo da fonteAngioni, S., G. Botticelli, M. C. Galassi, A. D. Genazzani, A. C. Mancini, F. Amato, F. Petraglia e A. R. Genazzani. "Cytokines in placental physiology". Advances in Neuroimmunology 1, n.º 2 (maio de 1991): 180–84. http://dx.doi.org/10.1016/s0960-5428(06)80222-6.
Texto completo da fonteLazo-de-la-Vega-Monroy, Maria-Luisa, Karen-Alejandra Mata-Tapia, Juan-Antonio Garcia-Santillan, Maria-Angelica Corona-Figueroa, Martha-Isabel Gonzalez-Dominguez, Hector-Manuel Gomez-Zapata, Juan-Manuel Malacara, Leonel Daza-Benitez e Gloria Barbosa-Sabanero. "Association of placental nutrient sensing pathways with birth weight". Reproduction 160, n.º 3 (setembro de 2020): 455–68. http://dx.doi.org/10.1530/rep-20-0186.
Texto completo da fonteRoos, S., T. L. Powell e T. Jansson. "Human placental taurine transporter in uncomplicated and IUGR pregnancies: cellular localization, protein expression, and regulation". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287, n.º 4 (outubro de 2004): R886—R893. http://dx.doi.org/10.1152/ajpregu.00232.2004.
Texto completo da fonteGreupink, Rick. "1 Placental pharmacology studies to characterize the effects and disposition of pharmaceuticals: lessons from human tissues and cells for improving drug safety in pregnancy". Archives of Disease in Childhood 108, n.º 6 (18 de maio de 2023): A1.1—A1. http://dx.doi.org/10.1136/archdischild-2023-esdppp.1.
Texto completo da fonteNakamura, Hiroyuki, Hirofumi Nagase, Masami Yoshida, Keiki Ogino, Toshio Seto, Kotaro Hatta e Ichiyo Matsuzaki. "Opioid peptides mediate heat stress-induced immunosuppression during pregnancy". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 274, n.º 3 (1 de março de 1998): R672—R676. http://dx.doi.org/10.1152/ajpregu.1998.274.3.r672.
Texto completo da fonteBorke, James L., Ariel Caride, Anil K. Verma, Lucky K. Kelley, Carl H. Smith, John T. Penniston e Rajiv Kumar. "Calcium pump epitopes in placental trophoblast basal plasma membranes". American Journal of Physiology-Cell Physiology 257, n.º 2 (1 de agosto de 1989): C341—C346. http://dx.doi.org/10.1152/ajpcell.1989.257.2.c341.
Texto completo da fonteWatson, Erica D., e James C. Cross. "Development of Structures and Transport Functions in the Mouse Placenta". Physiology 20, n.º 3 (junho de 2005): 180–93. http://dx.doi.org/10.1152/physiol.00001.2005.
Texto completo da fonteJohn, Rosalind M. "Epigenetic regulation of placental endocrine lineages and complications of pregnancy". Biochemical Society Transactions 41, n.º 3 (23 de maio de 2013): 701–9. http://dx.doi.org/10.1042/bst20130002.
Texto completo da fonteKennedy, L. A., S. Mukerji e M. J. Elliott. "The ontogeny of placental Na+–K+ ATPase in the mouse and its impairment by ethanol". Canadian Journal of Physiology and Pharmacology 64, n.º 7 (1 de julho de 1986): 1032–37. http://dx.doi.org/10.1139/y86-176.
Texto completo da fonteDrynda, Robert, Shanta J. Persaud, James E. Bowe e Peter M. Jones. "The Placental Secretome: Identifying Potential Cross-Talk Between Placenta and Islet β-Cells". Cellular Physiology and Biochemistry 45, n.º 3 (2018): 1165–71. http://dx.doi.org/10.1159/000487357.
Texto completo da fonte