Artigos de revistas sobre o tema "Placenta – Physiologie"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Placenta – Physiologie".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Taher, Shèdy, Yamilette Borja, Lucía Cabanela, Vincent J. Costers, Morgan Carson-Marino, Julie C. Bailes, Biswadeep Dhar et al. "Cholecystokinin, gastrin, cholecystokinin/gastrin receptors, and bitter taste receptor TAS2R14: trophoblast expression and signaling". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 316, n.º 5 (1 de maio de 2019): R628—R639. http://dx.doi.org/10.1152/ajpregu.00153.2018.
Texto completo da fonteLien, Yu-Chin, Zhe Zhang, Yi Cheng, Erzsebet Polyak, Laura Sillers, Marni J. Falk, Harry Ischiropoulos, Samuel Parry e Rebecca A. Simmons. "Human Placental Transcriptome Reveals Critical Alterations in Inflammation and Energy Metabolism with Fetal Sex Differences in Spontaneous Preterm Birth". International Journal of Molecular Sciences 22, n.º 15 (23 de julho de 2021): 7899. http://dx.doi.org/10.3390/ijms22157899.
Texto completo da fonteOsifo, E. O., e V. C. Ezeuko. "Histological Assessment of Placental Development Following Intrauterine Exposure to Caffeine in Adult Wistar Rats". Journal of Applied Sciences and Environmental Management 28, n.º 4 (29 de abril de 2024): 1115–20. http://dx.doi.org/10.4314/jasem.v28i4.11.
Texto completo da fonteRampon, Christine, Stéphanie Bouillot, Adriana Climescu-Haulica, Marie-Hélène Prandini, Francine Cand, Yves Vandenbrouck e Philippe Huber. "Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta". Physiological Genomics 34, n.º 2 (julho de 2008): 193–204. http://dx.doi.org/10.1152/physiolgenomics.00220.2007.
Texto completo da fonteSelvaratnam, Johanna, Haiyan Guan, James Koropatnick e Kaiping Yang. "Metallothionein-I- and -II-deficient mice display increased susceptibility to cadmium-induced fetal growth restriction". American Journal of Physiology-Endocrinology and Metabolism 305, n.º 6 (15 de setembro de 2013): E727—E735. http://dx.doi.org/10.1152/ajpendo.00157.2013.
Texto completo da fonteFlores-Pliego, Arturo, Jael Miranda, Sara Vega-Torreblanca, Yolotzin Valdespino-Vázquez, Cecilia Helguera-Repetto, Aurora Espejel-Nuñez, Héctor Borboa-Olivares et al. "Molecular Insights into the Thrombotic and Microvascular Injury in Placental Endothelium of Women with Mild or Severe COVID-19". Cells 10, n.º 2 (10 de fevereiro de 2021): 364. http://dx.doi.org/10.3390/cells10020364.
Texto completo da fonteVaughan, Owen R., Fredrick Thompson, Ramón A. Lorca, Colleen G. Julian, Theresa L. Powell, Lorna G. Moore e Thomas Jansson. "Effect of high altitude on human placental amino acid transport". Journal of Applied Physiology 128, n.º 1 (1 de janeiro de 2020): 127–33. http://dx.doi.org/10.1152/japplphysiol.00691.2019.
Texto completo da fonteAssad, R. S., F. Y. Lee e F. L. Hanley. "Placental compliance during fetal extracorporeal circulation". Journal of Applied Physiology 90, n.º 5 (1 de maio de 2001): 1882–86. http://dx.doi.org/10.1152/jappl.2001.90.5.1882.
Texto completo da fonteShanes, Elisheva D., Leena B. Mithal, Sebastian Otero, Hooman A. Azad, Emily S. Miller e Jeffery A. Goldstein. "Placental Pathology in COVID-19". American Journal of Clinical Pathology 154, n.º 1 (22 de maio de 2020): 23–32. http://dx.doi.org/10.1093/ajcp/aqaa089.
Texto completo da fonteTissot van Patot, M. C., J. Bendrick-Peart, V. E. Beckey, N. Serkova e L. Zwerdlinger. "Greater vascularity, lowered HIF-1/DNA binding, and elevated GSH as markers of adaptation to in vivo chronic hypoxia". American Journal of Physiology-Lung Cellular and Molecular Physiology 287, n.º 3 (setembro de 2004): L525—L532. http://dx.doi.org/10.1152/ajplung.00203.2003.
Texto completo da fonteOrdoñez, Maria Victoria, Giovanni Biglino, Massimo Caputo, Brenda Kelly, Aarthi Mohan, Johanna Trinder e Stephanie L. Curtis. "Case of placental insufficiency and premature delivery in a Fontan pregnancy: physiological insights and considerations on risk stratification". Open Heart 8, n.º 1 (fevereiro de 2021): e001211. http://dx.doi.org/10.1136/openhrt-2019-001211.
Texto completo da fonteGardner, Sarah, Jennifer L. Grindstaff e Polly Campbell. "Placental genotype affects early postpartum maternal behaviour". Royal Society Open Science 6, n.º 9 (18 de setembro de 2019): 190732. http://dx.doi.org/10.1098/rsos.190732.
Texto completo da fonteSIMCHENKO, A. V., O. A. ALEXEY e A. A. KUPRASHVILI. "MITOCHONDRIAL DYSFUNCTION IN THE GENESIS OF PLACENTAL PATHOLOGY: PERINATAL OUTCOMES". MODERN PERINATAL MEDICAL TECHNOLOGIES IN SOLVING THE PROBLEM OF DEMOGRAPHIC SECURITY, n.º 17 (dezembro de 2024): 357–61. https://doi.org/10.63030/2307-4795/2024.17.p.24.
Texto completo da fonteLevy, RA, E. Avvad, J. Oliveira e LC Porto. "Placental pathology in antiphospholipid syndrome". Lupus 7, n.º 2_suppl (fevereiro de 1998): 81–85. http://dx.doi.org/10.1177/096120339800700218.
Texto completo da fonteMakaroun, Sami, e Katherine Himes. "Differential Methylation of Syncytin-1 and 2 Distinguishes Fetal Growth Restriction from Physiologic Small for Gestational Age". American Journal of Perinatology Reports 08, n.º 01 (janeiro de 2018): e18-e24. http://dx.doi.org/10.1055/s-0038-1627473.
Texto completo da fonteRoberts, R. Michael, Jonathan A. Green e Laura C. Schulz. "The evolution of the placenta". Reproduction 152, n.º 5 (novembro de 2016): R179—R189. http://dx.doi.org/10.1530/rep-16-0325.
Texto completo da fonteGordon, Zoya, Osnat Eytan, Ariel J. Jaffa e David Elad. "Hemodynamic analysis of Hyrtl anastomosis in human placenta". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, n.º 2 (fevereiro de 2007): R977—R982. http://dx.doi.org/10.1152/ajpregu.00410.2006.
Texto completo da fonteWillis, D. M., J. P. O'Grady, J. J. Faber e K. L. Thornburg. "Diffusion permeability of cyanocobalamin in human placenta". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 250, n.º 3 (1 de março de 1986): R459—R464. http://dx.doi.org/10.1152/ajpregu.1986.250.3.r459.
Texto completo da fonteShearman, Lauren P., Alison M. McReynolds, Feng C. Zhou e Jerrold S. Meyer. "Relationship between [125I]RTI-55-labeled cocaine binding sites and the serotonin transporter in rat placenta". American Journal of Physiology-Cell Physiology 275, n.º 6 (1 de dezembro de 1998): C1621—C1629. http://dx.doi.org/10.1152/ajpcell.1998.275.6.c1621.
Texto completo da fonteWilson, Rebecca L., Weston Troja, Emily K. Sumser, Alec Maupin, Kristin Lampe e Helen N. Jones. "Insulin-like growth factor 1 signaling in the placenta requires endothelial nitric oxide synthase to support trophoblast function and normal fetal growth". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 320, n.º 5 (1 de maio de 2021): R653—R662. http://dx.doi.org/10.1152/ajpregu.00250.2020.
Texto completo da fonteGibbens, Jacob, Shauna-Kay Spencer, Lucia Solis, Teylor Bowles, Patrick B. Kyle, Jamie L. Szczepanski, John Polk Dumas, Reanna Robinson e Kedra Wallace. "Fas ligand neutralization attenuates hypertension, endothelin-1, and placental inflammation in an animal model of HELLP syndrome". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 319, n.º 2 (1 de agosto de 2020): R195—R202. http://dx.doi.org/10.1152/ajpregu.00272.2019.
Texto completo da fonteZhao, Fusheng, Fang Lei, Xiang Yan, Senfeng Zhang, Wen Wang e Yu Zheng. "Protective Effects of Hydrogen Sulfide Against Cigarette Smoke Exposure-Induced Placental Oxidative Damage by Alleviating Redox Imbalance via Nrf2 Pathway in Rats". Cellular Physiology and Biochemistry 48, n.º 5 (2018): 1815–28. http://dx.doi.org/10.1159/000492504.
Texto completo da fonteVan Dyke, James U., Matthew C. Brandley e Michael B. Thompson. "The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes". REPRODUCTION 147, n.º 1 (janeiro de 2014): R15—R26. http://dx.doi.org/10.1530/rep-13-0309.
Texto completo da fonteShahnawaz, Saira, Usman Shah Nawaz, Jonas Zaugg, Ghulam Hussain, Nadia Malik, Muhammad Zahoor-ul-Hassan Dogar, Shoaib Ahmad Malik e Christiane Albrecht. "Dysregulated Autophagy Leads to Oxidative Stress and Aberrant Expression of ABC Transporters in Women with Early Miscarriage". Antioxidants 10, n.º 11 (30 de outubro de 2021): 1742. http://dx.doi.org/10.3390/antiox10111742.
Texto completo da fonteHata, Toshiyuki, e Sarah Cajusay-Velasco. "Three-dimensional Power Doppler Ultrasound Study of the Placenta". Donald School Journal of Ultrasound in Obstetrics and Gynecology 8, n.º 4 (2014): 400–409. http://dx.doi.org/10.5005/jp-journals-10009-1380.
Texto completo da fonteMacias, Rocio I. R., Sonia Matilla, Elisa Lozano, Maria C. Estiú, Ronald P. Oude Elferink e Jose J. G. Marin. "Role of the placenta in serum autotaxin elevation during maternal cholestasis". American Journal of Physiology-Gastrointestinal and Liver Physiology 315, n.º 3 (1 de setembro de 2018): G399—G407. http://dx.doi.org/10.1152/ajpgi.00112.2018.
Texto completo da fonteSoliman, Natasha. "HOW IT WORKS 5: PHYSIOLOGICAL BIRTH OF THE PLACENTA". Practising Midwife 27, n.º 02 (1 de março de 2024): 12–15. http://dx.doi.org/10.55975/nuap7898.
Texto completo da fonteMark, P. J., J. L. Lewis, M. L. Jones e B. J. Waddell. "158. THE UNFOLDED PROTEIN RESPONSE MAY CONTRIBUTE TO GLUCOCORTICOID-INDUCED PLACENTAL GROWTH RESTRICTION IN THE RAT VIA INCREASED PLACENTAL EXPRESSION OF HEAT SHOCK PROTEIN 70". Reproduction, Fertility and Development 22, n.º 9 (2010): 76. http://dx.doi.org/10.1071/srb10abs158.
Texto completo da fonteShaw, A. J., M. Z. Mughal, M. J. Maresh e C. P. Sibley. "Sodium-dependent magnesium transport across in situ perfused rat placenta". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 261, n.º 2 (1 de agosto de 1991): R369—R372. http://dx.doi.org/10.1152/ajpregu.1991.261.2.r369.
Texto completo da fonteYang, Xiaotao, Ping Xu, Fumei Zhang, Li Zhang, Yangxi Zheng, Mingyu Hu, Lulu Wang et al. "AMPK Hyper-Activation Alters Fatty Acids Metabolism and Impairs Invasiveness of Trophoblasts in Preeclampsia". Cellular Physiology and Biochemistry 49, n.º 2 (2018): 578–94. http://dx.doi.org/10.1159/000492995.
Texto completo da fonteMandò, Chiara, Valeria M. Savasi, Gaia M. Anelli, Silvia Corti, Anaïs Serati, Fabrizia Lisso, Chiara Tasca, Chiara Novielli e Irene Cetin. "Mitochondrial and Oxidative Unbalance in Placentas from Mothers with SARS-CoV-2 Infection". Antioxidants 10, n.º 10 (24 de setembro de 2021): 1517. http://dx.doi.org/10.3390/antiox10101517.
Texto completo da fonteBarreto, Rodrigo da Silva Nunes, Ana Claudia Oliveira Carreira, Mônica Duarte da Silva, Leticia Alves Fernandes, Rafaela Rodrigues Ribeiro, Gustavo Henrique Doná Rodrigues Almeida, Bruna Tassia dos Santos Pantoja, Milton Yutaka Nishiyama Junior e Maria Angelica Miglino. "Mice Placental ECM Components May Provide A Three-Dimensional Placental Microenvironment". Bioengineering 10, n.º 1 (22 de dezembro de 2022): 16. http://dx.doi.org/10.3390/bioengineering10010016.
Texto completo da fonteBorke, James L., Ariel Caride, Anil K. Verma, Lucky K. Kelley, Carl H. Smith, John T. Penniston e Rajiv Kumar. "Calcium pump epitopes in placental trophoblast basal plasma membranes". American Journal of Physiology-Cell Physiology 257, n.º 2 (1 de agosto de 1989): C341—C346. http://dx.doi.org/10.1152/ajpcell.1989.257.2.c341.
Texto completo da fonteBainbridge, Shannon A., e Graeme N. Smith. "The effect of nicotine on in vitro placental perfusion pressure". Canadian Journal of Physiology and Pharmacology 84, n.º 8-9 (setembro de 2006): 953–57. http://dx.doi.org/10.1139/y06-037.
Texto completo da fonteMagnusson-Olsson, Anne Liese, Susanne Lager, Bo Jacobsson, Thomas Jansson e Theresa L. Powell. "Effect of maternal triglycerides and free fatty acids on placental LPL in cultured primary trophoblast cells and in a case of maternal LPL deficiency". American Journal of Physiology-Endocrinology and Metabolism 293, n.º 1 (julho de 2007): E24—E30. http://dx.doi.org/10.1152/ajpendo.00571.2006.
Texto completo da fonteCastillo-Castrejon, Marisol, Thomas Jansson e Theresa L. Powell. "No evidence of attenuation of placental insulin-stimulated Akt phosphorylation and amino acid transport in maternal obesity and gestational diabetes mellitus". American Journal of Physiology-Endocrinology and Metabolism 317, n.º 6 (1 de dezembro de 2019): E1037—E1049. http://dx.doi.org/10.1152/ajpendo.00196.2019.
Texto completo da fonteKilpatrick, S. J., J. M. Roberts, D. L. Lykins e R. N. Taylor. "Characterization and ontogeny of endothelin receptors in human placenta". American Journal of Physiology-Endocrinology and Metabolism 264, n.º 3 (1 de março de 1993): E367—E372. http://dx.doi.org/10.1152/ajpendo.1993.264.3.e367.
Texto completo da fonteGreupink, Rick. "1 Placental pharmacology studies to characterize the effects and disposition of pharmaceuticals: lessons from human tissues and cells for improving drug safety in pregnancy". Archives of Disease in Childhood 108, n.º 6 (18 de maio de 2023): A1.1—A1. http://dx.doi.org/10.1136/archdischild-2023-esdppp.1.
Texto completo da fonteElzinga, Femke A., Behrad Khalili, Daan J. Touw, Jelmer R. Prins, Peter Olinga, Henri G. D. Leuvenink, Harry van Goor, Sanne J. Gordijn, Anika Nagelkerke e Paola Mian. "Placenta-on-a-Chip as an In Vitro Approach to Evaluate the Physiological and Structural Characteristics of the Human Placental Barrier upon Drug Exposure: A Systematic Review". Journal of Clinical Medicine 12, n.º 13 (27 de junho de 2023): 4315. http://dx.doi.org/10.3390/jcm12134315.
Texto completo da fonteJohn, Rosalind M. "Epigenetic regulation of placental endocrine lineages and complications of pregnancy". Biochemical Society Transactions 41, n.º 3 (23 de maio de 2013): 701–9. http://dx.doi.org/10.1042/bst20130002.
Texto completo da fonteLazo-de-la-Vega-Monroy, Maria-Luisa, Karen-Alejandra Mata-Tapia, Juan-Antonio Garcia-Santillan, Maria-Angelica Corona-Figueroa, Martha-Isabel Gonzalez-Dominguez, Hector-Manuel Gomez-Zapata, Juan-Manuel Malacara, Leonel Daza-Benitez e Gloria Barbosa-Sabanero. "Association of placental nutrient sensing pathways with birth weight". Reproduction 160, n.º 3 (setembro de 2020): 455–68. http://dx.doi.org/10.1530/rep-20-0186.
Texto completo da fonteWatson, Erica D., e James C. Cross. "Development of Structures and Transport Functions in the Mouse Placenta". Physiology 20, n.º 3 (junho de 2005): 180–93. http://dx.doi.org/10.1152/physiol.00001.2005.
Texto completo da fonteZhang, Xue Mei, Xi Xiong, Chao Tong, Qin Li, Shuai Huang, Qing Shu Li, Ya Ming Liu et al. "Down-Regulation of Laminin (LN)- α5 is Associated with Preeclampsia and Impairs Trophoblast Cell Viability and Invasiveness Through PI3K Signaling Pathway". Cellular Physiology and Biochemistry 51, n.º 5 (2018): 2030–40. http://dx.doi.org/10.1159/000495822.
Texto completo da fontePaterson, P. G., B. Sarkar e S. H. Zlotkin. "The effect of zinc levels in fetal circulation on zinc clearance across the in situ perfused guinea pig placenta". Canadian Journal of Physiology and Pharmacology 68, n.º 11 (1 de novembro de 1990): 1401–6. http://dx.doi.org/10.1139/y90-213.
Texto completo da fonteVisiedo, Francisco, Fernando Bugatto, Viviana Sánchez, Irene Cózar-Castellano, Jose L. Bartha e Germán Perdomo. "High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta". American Journal of Physiology-Endocrinology and Metabolism 305, n.º 2 (15 de julho de 2013): E205—E212. http://dx.doi.org/10.1152/ajpendo.00032.2013.
Texto completo da fonteAli, Asghar, Frieder Hadlich, Muhammad W. Abbas, Muhammad A. Iqbal, Dawit Tesfaye, Gerrit J. Bouma, Quinton A. Winger e Siriluck Ponsuksili. "MicroRNA–mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers". International Journal of Molecular Sciences 22, n.º 5 (25 de fevereiro de 2021): 2313. http://dx.doi.org/10.3390/ijms22052313.
Texto completo da fonteJin, Yan, Hana Vakili, Song Yan Liu, Savas Menticoglou, Margaret E. Bock e Peter A. Cattini. "Chromosomal architecture and placental expression of the human growth hormone gene family are targeted by pre-pregnancy maternal obesity". American Journal of Physiology-Endocrinology and Metabolism 315, n.º 4 (1 de outubro de 2018): E435—E445. http://dx.doi.org/10.1152/ajpendo.00042.2018.
Texto completo da fonteWieser, Fritz, Leslie Waite, Christophe Depoix e Robert N. Taylor. "PPAR Action in Human Placental Development and Pregnancy and Its Complications". PPAR Research 2008 (2008): 1–14. http://dx.doi.org/10.1155/2008/527048.
Texto completo da fonteSchäffer, Leonhard, Johannes Vogel, Christian Breymann, Max Gassmann e Hugo H. Marti. "Preserved placental oxygenation and development during severe systemic hypoxia". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 290, n.º 3 (março de 2006): R844—R851. http://dx.doi.org/10.1152/ajpregu.00237.2005.
Texto completo da fonteWaddell, B. J. "056. EUTHERIAN MAMMALS DO IT DIFFERENTLY: PLACENTAL ENDOCRINE STRATEGIES FOR THE MAINTENANCE OF PREGNANCY IN RODENTS AND PRIMATES". Reproduction, Fertility and Development 22, n.º 9 (2010): 17. http://dx.doi.org/10.1071/srb10abs056.
Texto completo da fonte