Literatura científica selecionada sobre o tema "Physique quantique à plusieurs corps"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Physique quantique à plusieurs corps".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Physique quantique à plusieurs corps"
Waintal, Xavier. "Le problème à N corps qui se cache derrière l’ordinateur quantique". Reflets de la physique, n.º 70 (outubro de 2021): 18–23. http://dx.doi.org/10.1051/refdp/202170018.
Texto completo da fonteGauthier, Yvon. "Vérité et vérification en logique mathématique et dans les théories physiques". Articles 9, n.º 1 (9 de janeiro de 2007): 135–45. http://dx.doi.org/10.7202/203186ar.
Texto completo da fonteYefsah, Tarik, e Clément Sayrin. "Simulation quantique avec des atomes froids. Comment manipuler et sonder des systèmes quantiques à l’échelle de l’atome individuel". Reflets de la physique, n.º 71 (janeiro de 2022): 8–15. http://dx.doi.org/10.1051/refdp/202271008.
Texto completo da fonteMarchildon, Louis. "À propos du lien entre la théorie quantique et les probabilités". Revue des questions scientifiques 192, n.º 1-2 (1 de janeiro de 2021): 93–115. http://dx.doi.org/10.14428/qs.v192i1-2.70013.
Texto completo da fonteHouzet, Manuel, Julia Meyer e Pascal Simon. "Le spectre de Majorana". Reflets de la physique, n.º 61 (março de 2019): 4–10. http://dx.doi.org/10.1051/refdp/201961004.
Texto completo da fonteCaillé, Arthur. "Peut-on seulement savoir ce qu’ est le corps ?" Archives de Philosophie Tome 87, n.º 3 (21 de junho de 2023): 113–30. http://dx.doi.org/10.3917/aphi.863.0113.
Texto completo da fonteSacuto, Alain, Yann Galais, Maximilien Cazayous e Sarah Houver. "La supraconductivité à haute température dans les oxydes de cuivre : où en est-on ?" Reflets de la physique, n.º 70 (outubro de 2021): 4–17. http://dx.doi.org/10.1051/refdp/202170004.
Texto completo da fonteDriant, Anouk. "Rencontrer le corps de malades en fin de vie". Revue de psychothérapie psychanalytique de groupe 25, n.º 1 (1995): 95–104. http://dx.doi.org/10.3406/rppg.1995.1302.
Texto completo da fonteVitrac, Richard. "La démonstration systémique des formules de Lorentz". Acta Europeana Systemica 8 (10 de julho de 2020): 225–30. http://dx.doi.org/10.14428/aes.v8i1.56383.
Texto completo da fonteFauché, Serge. "Hygiène de l’enfance et éducation physique. Rôles de la médecine scolaire après la première guerre mondiale (1918-1924)". STAPS 17, n.º 40 (1996): 39–54. http://dx.doi.org/10.3406/staps.1996.1059.
Texto completo da fonteTeses / dissertações sobre o assunto "Physique quantique à plusieurs corps"
Victorin, Nicolas. "Gaz quantiques à plusieurs composantes sous champ de jauge". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY049.
Texto completo da fonteThe first observation of Bose-Einstein condensation (BEC) in dilute atomic vapors has been a breakthrough both fundamentally, verifying theoretical concept predicted by Bose and Einstein several decades ago, revealing the statistical property of quantum particles. Since then, a new field has emerged and experimentalists are able to study this artificial matter in a very clean and controllable way. Cold-atom systems allows us to explore a whole range of fundamental phenomena that are extremely difficult or impossible to study in real materials, such as Bloch oscillation, Mott-superfluid transition, topology of band structure, orbital magnetism just to name a few. These progresses allow the quantum simulation of a large class of Hamiltonians subjected to magnetic field. Indeed, condensed matter phenomena under strong magnetic fields are still intriguing and are at the center of modern research. For instance, topological states of matter are realized in quantum Hall systems. A ladder is the simplest geometry where one can get some insight on two-dimensional quantum systems subjected to a synthetic gauge field.The first part of this thesis is dedicated to the study of double ring ladder subjected to gauge fluxes.Through both numerical and analytical calculation we explore the phase diagram of the system revealing known phases such as Meissner, vortex and biased ladder phase and the effect of commensurability of the total flux. Thanks to Bogoliubov approximation we are able to derive the excitation spectrum of the system and the nature of the low energy modes in the different phases revealing supersolid features as well as Josephson oscillation between the rings. The regime of infinite interaction between the boson enabled us to use exact mapping into fermions using Jordan-Wigner transformation to characterize the properties of the ground state. We explore the intermediate regime of interactions. Thanks to mode expansion and re-fermionization approach of the bosonized Hamiltonian of the double ring under gauge flux, we show the peculiarities of finite size periodic boundary condition on the current in the double ring with a rotating barrier inducing gauge flux.Exciton-polaritons in semiconductor microcavities constitute an amazing playground to study quantum fluids of light where remarkable effects, similar to those observed in cold atoms experiments, arise. Even though this quantum fluid of light is assumed to be composed, almost, upon pure condensate, the non-equilibrium nature of the gas make the comparison with typical condensates in cold atom experiment rather non trivial.The second part of the thesis is devoted to the study of excitons-polariton in honeycomb lattice. One of the most interesting aspect of the honeycomb lattice problem is that its low-energy excitations are massless, chiral, Dirac particles. Exciton-polariton, which are composite particle of light, in this lattice get back the relativist character of light but in a context where condensation is possible. Features of bosons in honeycomb lattice including retarded Green’s functions, Brillouin-zone selection mechanism and link between geometry of the lattice. We show that decay mode are suppressed as a consequence of the symmetry of the lattice leading to the possibility to engineer polaritonic dark-state. Then we obtain the Bogoliubov excitation spectrum of exciton-polariton. The usual bistability curve is shown to be unstable above C point showing the break-down of mean-field theory because of possible highly non-classical state. Finally experiment and theory are compared
Mei, P. "Spatial particle correlations in 6He and 8He". Phd thesis, Université de Caen, 2011. http://tel.archives-ouvertes.fr/tel-00636356.
Texto completo da fonteVoliotis, Dimitrios. "Contribution à l’étude des chaînes de spin quantique avec une perturbation aléatoire ou apériodique". Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0253/document.
Texto completo da fonteIn the present thesis, the critical and off-critical behaviors of quantum spin chains in presence of a random or an aperiodic perturbation of the couplings is studied. The critical behavior of the Ising and Potts random quantum chains is known to be governed by the same Infinite-Disorder Fixed Point. We have implemented a numerical version of the Strong-Disorder Renormalization Group (SDRG) to test this prediction. We then studied the quantum random Ashkin-Teller chain by Density Matrix Renormalization Group. The phase diagram, previously obtained by SDRG, is confirmed by estimating the location of the peaks of the integrated autocorrelation times of both the spin-spin and polarization-polarization autocorrelation functions and of the disorder fluctuations of magnetization and polarization. Finally, the existence of a double-Griffiths phase is shown by a detailed study of the decay of the off-critical autocorrelation functions. As expected, a divergence of the dynamical exponent is observed along the two transition lines. In the aperiodic case, we studied both the Ising and Potts quantum chains. Using numerical SDRG, we confirmed the known analytical results for the Ising chains and proposed a new estimate of the magnetic scaling dimension.For the quantum q-state Potts chain, we estimated the magnetic scaling dimension for various aperiodic sequences and showed that it is independent of q for all sequences with a vanishing wandering exponent. However, we observed that the dynamical exponent is finite and increases with the number of states q. In contrast, for the Rudin-Shapiro sequence, the results are compatible with an Infinite-Disorder Fixed Point with a diverging dynamical exponent, equipe de renormalization
Scarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.
Texto completo da fonteMy PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity
Cecile, Mario Guillaume. "Exploring quantum dynamics : from hydrodynamics to measurement induced phase transition". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1298.
Texto completo da fonteIn this thesis, we take a deep dive into the world of quantum dynamics, aiming to understand the complex behaviours that arise in quantum many-body systems and the emergence of hydrodynamics behaviour. Throughout the chapters, we simplify key concepts essential for understanding how quantum systems operate. Chapter 1 presents an overview of fundamental concepts on emergent phenomena in quantum integrable systems and generalized hydrodynamics, which is essential to understand the complexities of quantum dynamics. Additionally, we offer an in-depth introduction to Matrix Product States, which are a valuable tool for efficiently simulating quantum dynamics in 1D systems. In Chapter 2, we develop a model to describe the relaxation of spin helices using the framework of generalized hydrodynamics with diffusive corrections and a modified version of the local density approximation. Our analysis demonstrates that this hydrodynamic framework accurately reproduces the experimentally observed relaxation dynamics. Additionally, it predicts the long-term relaxation behaviour, which lies beyond the experimentally accessible time scales. Our theoretical framework elucidates the occurrence of temporal regimes exhibiting seemingly anomalous diffusion and highlights the asymmetry between positive and negative anisotropy regimes at short and intermediate time intervals. Chapter 3 delves into the intriguing phenomena observed in the easy-axis regime |Δ| ≥ 1, where initial states with zero magnetic fluctuations instead locally relax to an exotic equilibrium states that we will refer to as squeezed generalized Gibbs ensemble. At the isotropic point, interestingly, we found an unusual behaviour which explicitly depend on the initial state. Namely, for the Néel state, we found extensive fluctuations and a super-diffusive dynamical exponent compatible with Kardar-Parisi-Zhang universality. For another non-fluctuating initial state, e.g., product state of spin singlets, we instead found diffusive scaling. In Chapter 4, we investigate the time evolution of an extended quantum spin chains under continuous monitoring using matrix product states with a fixed bond dimension, employing the Time-Dependent Variational Principle algorithm. This algorithm yields an effective classical nonlinear evolution with a conserved charge, offering an approximation to the true quantum evolution with some error. We find that the error rate exhibits a phase transition as the strength of the monitoring varies, and this transition can be accurately identified through scaling analysis with relatively small bond dimensions. Our approach enables efficient numerical determination of critical parameters associated with measurement-induced phase transitions in many-body quantum systems. Furthermore, in the presence of U(1) global spin charge, we observe a distinct charge-sharpening transition, which occurs independently of the entanglement transition. This transition is identified by analysing the charge fluctuations within a local subset of the system over extended time periods. Our findings highlight the effectiveness of TDVP time evolution as a means to detect measurement-induced phase transitions in systems of varying dimensions and sizes.Finally, the last chapter provides a conclusive summary of the findings and discusses potential avenues for future research
Molineri, Anaïs. "Un nouveau dispositif pour étudier la relaxation d'un système quantique à N corps". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO013/document.
Texto completo da fonteThis manuscript presents the first steps of a new ultracold atoms experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. This experiment will include a quantum gas microscope, allowing us to measure spatial correlation functions in two-dimensionnal systems. The current state of the construction allows us to generate both magneto-optical trap of strontium: along its wide transition at 461 nm and its narrow transition at 689 nm. Concurrently with the experimental setup, we carried out works on a reconstruction algorithm required for the future data processing of the microscope images. This manuscript details experimental aspects, justifying their choices, and presents the current state of work on the reconstruction algorithm. There are still steps to complete the experimental setup: add a chamber where we will make the measurements to the vaccuum system, set up the quantum gaz microscope and all the required optics to transport the atomic clouds between two vaccuum chambers, to reach Bose-Einstein condensation and to confine the atoms in two-dimensionnal optical traps
CHAU, Huu-Tai. "Symétrie et géométrie du problème à N-corps. Application à la physique nucléaire". Phd thesis, Université de Caen, 2002. http://tel.archives-ouvertes.fr/tel-00002252.
Texto completo da fonteFrerot, Irénée. "Corrélations quantiques : une approche de physique statistique". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN061/document.
Texto completo da fonteThe notion of coherence, intimately related to the notion of wave-particle duality, plays a central role in quantum mechanics. When quantum coherence extends over several particles inside a system, the description in terms of individual objects becomes impossible, due to the development of quantum correlations (or entanglement). In this manuscript, we focus on equilibrium systems, for which we show that coherent fluctuations add up to the fluctuations predicted by thermodynamic identities, valid for classical systems only. In the ground state, coherent fluctuations are the only ones to subsist, an in this case we study their relationship with entanglement entropy. We show in particular that an hypothesis of effective temperature, spatially modulated, captures the structure of entanglement in a many-body system, and we show how this temperature can be reconstructed from usual correlation functions. Our results also enable for a refined understanding of quantum phase transitions. We show in particular that the phase transition between a bosonic Mott insulator and a superfluid gives rise to a singularity of entanglement entropy induced by amplitude fluctuations of the phase of the condensate. We finally identify a coherence length governing the scaling behaviour of coherent fluctuations inside the quantum critical region in the finite-temperature vicinity of a quantum critical point, and open novel perspectives for the metrological advantage offered by the exceptional coherence which develops close to quantum critical points, based on the example of the quantum Ising model
Chau, Huu-Tai Pierre. "Symétrie et géométrie du problème à N-corps : application à la physique nucléaire". Caen, 2002. http://www.theses.fr/2002CAEN2029.
Texto completo da fontePomeransky, Andrei A. "Intrication et imperfections dans le calcul quantique". Toulouse 3, 2004. http://www.theses.fr/2004TOU30132.
Texto completo da fonteQuantum information is a new domain of physics, which studies the applications of quantum systems to the computation and to the information transmission. The quantum computers use the lows of quantum mechanics to perform the calculations much more efficiently than all currently existing computers can. The quantum computers will be influenced by all kinds of perturbations. We study, in the case of two very different quantum computations, the efficiency of the quantum computers in the presence of the static imperfections. One of the fundamental reasons of the extraordinary efficiency of the quantum computers is the effect of quantum entanglement. In the present thesis we study certain important properties of a widely used quantitative measure of entanglement. We consider also the average informational entropy of quantum states, find an explicit expression for this quantity and study some its most important properties
Livros sobre o assunto "Physique quantique à plusieurs corps"
T, Ivancevic Tijana, ed. Quantum leap: From Dirac and Feynman, across the universe, to human body and mind. Singapore: World Scientific, 2008.
Encontre o texto completo da fonteHenri, Orland, ed. Quantum many-particle systems. Reading, MA: Perseus Books, 1998.
Encontre o texto completo da fonteHenri, Orland, ed. Quantum many-particle systems. Redwood City, Calif: Addison-Wesley Pub. Co., 1988.
Encontre o texto completo da fonteQuantum Leap: From Dirac and Feynman, Across the Universe, to Human Body and Mind. World Scientific Publishing Co Pte Ltd, 2008.
Encontre o texto completo da fonteQuantum Leap: From Dirac and Feynman, Across the Universe, to Human Body and Mind. World Scientific Publishing Co Pte Ltd, 2008.
Encontre o texto completo da fonteNegele, John W. Quantum Many-Particle Systems. Taylor & Francis Group, 2018.
Encontre o texto completo da fonteNegele, John W. Quantum Many-Particle Systems. Taylor & Francis Group, 2018.
Encontre o texto completo da fonteNegele, John W. Quantum Many-Particle Systems. Taylor & Francis Group, 2018.
Encontre o texto completo da fonte