Artigos de revistas sobre o tema "Physiological motion detection"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Physiological motion detection".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wang, Liting, Xiaoqing Ding e Chi Fang. "Face live detection method based on physiological motion analysis". Tsinghua Science and Technology 14, n.º 6 (dezembro de 2009): 685–90. http://dx.doi.org/10.1016/s1007-0214(09)70135-x.
Texto completo da fonteKrause, Bryan M., e Geoffrey M. Ghose. "Micropools of reliable area MT neurons explain rapid motion detection". Journal of Neurophysiology 120, n.º 5 (1 de novembro de 2018): 2396–409. http://dx.doi.org/10.1152/jn.00845.2017.
Texto completo da fonteZhang, Long, Xuezhi Yang e Jing Shen. "Frequency Variability Feature for Life Signs Detection and Localization in Natural Disasters". Remote Sensing 13, n.º 4 (21 de fevereiro de 2021): 796. http://dx.doi.org/10.3390/rs13040796.
Texto completo da fonteHan, Mianzhe, Yuki Todo e Zheng Tang. "An Artificial Visual System for Three Dimensional Motion Direction Detection". Electronics 11, n.º 24 (13 de dezembro de 2022): 4161. http://dx.doi.org/10.3390/electronics11244161.
Texto completo da fonteLuo, Linbo, Yuanjing Li, Haiyan Yin, Shangwei Xie, Ruimin Hu e Wentong Cai. "Crowd-Level Abnormal Behavior Detection via Multi-Scale Motion Consistency Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junho de 2023): 8984–92. http://dx.doi.org/10.1609/aaai.v37i7.26079.
Texto completo da fonteLiu, Hairen, e Wei Zhang. "Data Analysis of Athletes’ Physiological Indexes in Training and Competition Based on Wireless Sensor Network". Journal of Sensors 2021 (18 de setembro de 2021): 1–11. http://dx.doi.org/10.1155/2021/5923893.
Texto completo da fonteGüttler, Jörg, Dany Bassily, Christos Georgoulas, Thomas Linner e Thomas Bock. "Unobtrusive Tremor Detection While Gesture Controlling a Robotic Arm". Journal of Robotics and Mechatronics 27, n.º 1 (20 de fevereiro de 2015): 103–4. http://dx.doi.org/10.20965/jrm.2015.p0103.
Texto completo da fonteDOUKAS, CHARALAMPOS, e ILIAS MAGLOGIANNIS. "ADVANCED CLASSIFICATION AND RULES-BASED EVALUATION OF MOTION, VISUAL AND BIOSIGNAL DATA FOR PATIENT FALL INCIDENT DETECTION". International Journal on Artificial Intelligence Tools 19, n.º 02 (abril de 2010): 175–91. http://dx.doi.org/10.1142/s0218213010000108.
Texto completo da fonteVolpes, Gabriele, Simone Valenti, Giuseppe Genova, Chiara Barà, Antonino Parisi, Luca Faes, Alessandro Busacca e Riccardo Pernice. "Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements". Biosensors 14, n.º 4 (20 de abril de 2024): 205. http://dx.doi.org/10.3390/bios14040205.
Texto completo da fonteDharmansyah, Dhika. "LITERATURE REVIEW: DESIGN OF INTERNET OF HEALTH THINGS (IOHT) MODEL FOR FALL RISK DETECTION IN ELDERLY AT HOME". Journal of Nursing Culture and Technology 1, n.º 1 (1 de maio de 2024): 30–36. https://doi.org/10.70049/jnctech.v1i1.8.
Texto completo da fonteLittle, Kieran, Bobby K Pappachan, Sibo Yang, Bernardo Noronha, Domenico Campolo e Dino Accoto. "Elbow Motion Trajectory Prediction Using a Multi-Modal Wearable System: A Comparative Analysis of Machine Learning Techniques". Sensors 21, n.º 2 (12 de janeiro de 2021): 498. http://dx.doi.org/10.3390/s21020498.
Texto completo da fontePeng, Xidong, Xinge Zhu e Yuexin Ma. "CL3D: Unsupervised Domain Adaptation for Cross-LiDAR 3D Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 2 (26 de junho de 2023): 2047–55. http://dx.doi.org/10.1609/aaai.v37i2.25297.
Texto completo da fonteO'Carroll, David C., e Steven D. Wiederman. "Contrast sensitivity and the detection of moving patterns and features". Philosophical Transactions of the Royal Society B: Biological Sciences 369, n.º 1636 (19 de fevereiro de 2014): 20130043. http://dx.doi.org/10.1098/rstb.2013.0043.
Texto completo da fonteNeelon, Michael F., e Rick L. Jenison. "Act globally, think locally". Behavioral and Brain Sciences 24, n.º 2 (abril de 2001): 231–32. http://dx.doi.org/10.1017/s0140525x0141394x.
Texto completo da fonteGiansanti, Daniele, e Giovanni Maccioni. "Physiological motion monitoring: a wearable device and adaptative algorithm for sit-to-stand timing detection". Physiological Measurement 27, n.º 8 (2 de junho de 2006): 713–23. http://dx.doi.org/10.1088/0967-3334/27/8/006.
Texto completo da fonteYang, Sibo, Neha P. Garg, Ruobin Gao, Meng Yuan, Bernardo Noronha, Wei Tech Ang e Dino Accoto. "Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots". Sensors 23, n.º 6 (10 de março de 2023): 2998. http://dx.doi.org/10.3390/s23062998.
Texto completo da fonteXie, Liping, Xingyu Zi, Qingshi Meng, Zhiwen Liu e Lisheng Xu. "Detection of Physiological Signals Based on Graphene Using a Simple and Low-Cost Method". Sensors 19, n.º 7 (6 de abril de 2019): 1656. http://dx.doi.org/10.3390/s19071656.
Texto completo da fonteAbdel-Latif, Mahmoud M., Mudassir M. Rashid, Mohammad Reza Askari, Andrew Shahidehpour, Mohammad Ahmadasas, Minsun Park, Lisa Sharp, Lauretta Quinn e Ali Cinar. "Acute Psychological Stress Detection Using Explainable Artificial Intelligence for Automated Insulin Delivery". Signals 5, n.º 3 (30 de julho de 2024): 494–507. http://dx.doi.org/10.3390/signals5030026.
Texto completo da fontePanagi, S., Α. Hadjiconstanti, G. Charitou, D. Kaolis, I. Petrou, C. Kyriacou e Y. Parpottas. "A moving liver phantom in an anthropomorphic thorax for SPECT MP imaging". Physical and Engineering Sciences in Medicine 45, n.º 1 (1 de janeiro de 2022): 63–72. http://dx.doi.org/10.1007/s13246-021-01081-4.
Texto completo da fonteJacobs, David M., Sverker Runeson e Isabell E. K. Andersson. "Reliance on constraints means detection of information". Behavioral and Brain Sciences 24, n.º 4 (agosto de 2001): 679–80. http://dx.doi.org/10.1017/s0140525x01440088.
Texto completo da fonteZhang, Yifan, Shuang Song, Rik Vullings, Dwaipayan Biswas, Neide Simões-Capela, Nick van Helleputte, Chris van Hoof e Willemijn Groenendaal. "Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths". Sensors 19, n.º 3 (7 de fevereiro de 2019): 673. http://dx.doi.org/10.3390/s19030673.
Texto completo da fonteROSENBERG, ARI, PASCAL WALLISCH e DAVID C. BRADLEY. "Responses to direction and transparent motion stimuli in area FST of the macaque". Visual Neuroscience 25, n.º 2 (março de 2008): 187–95. http://dx.doi.org/10.1017/s0952523808080528.
Texto completo da fonteWiederman, Steven D., e David C. O’Carroll. "Biologically Inspired Feature Detection Using Cascaded Correlations of off and on Channels". Journal of Artificial Intelligence and Soft Computing Research 3, n.º 1 (1 de janeiro de 2013): 5–14. http://dx.doi.org/10.2478/jaiscr-2014-0001.
Texto completo da fontePuli, Akshay, e Azadeh Kushki. "Toward Automatic Anxiety Detection in Autism: A Real-Time Algorithm for Detecting Physiological Arousal in the Presence of Motion". IEEE Transactions on Biomedical Engineering 67, n.º 3 (março de 2020): 646–57. http://dx.doi.org/10.1109/tbme.2019.2919273.
Texto completo da fonteSharma, Ashish, e Gaurav Sethi. "Fatigue Detection Post Physical Activity Using Machine Learning Algorithms". Journal of Physics: Conference Series 2327, n.º 1 (1 de agosto de 2022): 012072. http://dx.doi.org/10.1088/1742-6596/2327/1/012072.
Texto completo da fonteAmenedo, Elena, Paula Pazo-Alvarez e Fernando Cadaveira. "Vertical asymmetries in pre-attentive detection of changes in motion direction". International Journal of Psychophysiology 64, n.º 2 (maio de 2007): 184–89. http://dx.doi.org/10.1016/j.ijpsycho.2007.02.001.
Texto completo da fonteTang, Xiangbin, Aihua Yang e Liangming Li. "Optimization of Nanofiber Wearable Heart Rate Sensor Module for Human Motion Detection". Computational and Mathematical Methods in Medicine 2022 (16 de junho de 2022): 1–8. http://dx.doi.org/10.1155/2022/1747822.
Texto completo da fonteLi, Sheng, Huan Li, Yongcai Lu, Minhao Zhou, Sai Jiang, Xiaosong Du e Chang Guo. "Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring". Biosensors 13, n.º 10 (27 de setembro de 2023): 909. http://dx.doi.org/10.3390/bios13100909.
Texto completo da fonteKoh, Junho, Junhyung Lee, Youngwoo Lee, Jaekyum Kim e Jun Won Choi. "MGTANet: Encoding Sequential LiDAR Points Using Long Short-Term Motion-Guided Temporal Attention for 3D Object Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 1 (26 de junho de 2023): 1179–87. http://dx.doi.org/10.1609/aaai.v37i1.25200.
Texto completo da fonteLin, Hong Dun, Yen Shien Lee, Yu Jen Su e Bor Nian Chuang. "Nanosecond Pulse Near-Field Sensing Based Non-Contact Physiological Signals Measurement". Advanced Materials Research 301-303 (julho de 2011): 1214–19. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.1214.
Texto completo da fonteChwalek, Patrick, David Ramsay e Joseph A. Paradiso. "Captivates: A Smart Eyeglass Platform for Across-Context Physiological Measurements". GetMobile: Mobile Computing and Communications 27, n.º 2 (3 de agosto de 2023): 18–22. http://dx.doi.org/10.1145/3614214.3614220.
Texto completo da fonteLi, Haoying, Ziran Zhang, Tingting Jiang, Peng Luo, Huajun Feng e Zhihai Xu. "Real-World Deep Local Motion Deblurring". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 1 (26 de junho de 2023): 1314–22. http://dx.doi.org/10.1609/aaai.v37i1.25215.
Texto completo da fonteMarkova, Valentina, Todor Ganchev, Silvia Filkova e Miroslav Markov. "MMD-MSD: A Multimodal Multisensory Dataset in Support of Research and Technology Development for Musculoskeletal Disorders". Algorithms 17, n.º 5 (29 de abril de 2024): 187. http://dx.doi.org/10.3390/a17050187.
Texto completo da fonteQian, Ning. "Computing Stereo Disparity and Motion with Known Binocular Cell Properties". Neural Computation 6, n.º 3 (maio de 1994): 390–404. http://dx.doi.org/10.1162/neco.1994.6.3.390.
Texto completo da fonteCarras, Porto. "Detection of Fourier and non-Fourier motion in the human visual system". International Journal of Psychophysiology 18, n.º 2 (novembro de 1994): 114–15. http://dx.doi.org/10.1016/0167-8760(94)90355-7.
Texto completo da fonteLiu, Ruiqing, Juncai Zhu e Xiaoping Rao. "Murine Motion Behavior Recognition Based on DeepLabCut and Convolutional Long Short-Term Memory Network". Symmetry 14, n.º 7 (29 de junho de 2022): 1340. http://dx.doi.org/10.3390/sym14071340.
Texto completo da fonteFan, Shaocan, e Zhenmiao Deng. "Chest Wall Motion Model of Cardiac Activity for Radar-Based Vital-Sign-Detection System". Sensors 24, n.º 7 (23 de março de 2024): 2058. http://dx.doi.org/10.3390/s24072058.
Texto completo da fonteTlemsani, Fatima Zohra, Hayriye Gidik, Elham Mohsenzadeh e Daniel Dupont. "Textile Heat Flux Sensor Used in Stress Detection of Children with CP". Solid State Phenomena 333 (10 de junho de 2022): 153–60. http://dx.doi.org/10.4028/p-v03hy7.
Texto completo da fonteWen, Wen, e Fang Fang. "Flexible sensors in smart textiles and their applications". Wearable Technology 2, n.º 2 (16 de junho de 2022): 83. http://dx.doi.org/10.54517/wt.v2i2.1651.
Texto completo da fonteLi, Shun-Xin, Hong Xia, Yi-Shi Xu, Chao Lv, Gong Wang, Yun-Zhi Dai e Hong-Bo Sun. "Gold nanoparticle densely packed micro/nanowire-based pressure sensors for human motion monitoring and physiological signal detection". Nanoscale 11, n.º 11 (2019): 4925–32. http://dx.doi.org/10.1039/c9nr00595a.
Texto completo da fonteLomas, Dennis. "Representation of basic kinds: Not a case of evolutionary internalization of universal regularities". Behavioral and Brain Sciences 24, n.º 4 (agosto de 2001): 686–87. http://dx.doi.org/10.1017/s0140525x01500084.
Texto completo da fonteFeng, Huanhuan, Yaming Liu, Liang Feng, Limeng Zhan, Shuaishuai Meng, Hongjun Ji, Jiaheng Zhang et al. "Additively Manufactured Flexible Electronics with Ultrabroad Range and High Sensitivity for Multiple Physiological Signals’ Detection". Research 2022 (8 de agosto de 2022): 1–11. http://dx.doi.org/10.34133/2022/9871489.
Texto completo da fonteSaha, Amitave, Xiuzai Zhang, Bappi Chandra Saha e Sunit Mistry. "Human Physiological Condition Monitoring System based on Microcontrollers". European Journal of Electrical Engineering and Computer Science 7, n.º 3 (13 de maio de 2023): 6–16. http://dx.doi.org/10.24018/ejece.2023.7.3.513.
Texto completo da fonteParkinson, Rachel H., Sinan Zhang e John R. Gray. "Neonicotinoid and sulfoximine pesticides differentially impair insect escape behavior and motion detection". Proceedings of the National Academy of Sciences 117, n.º 10 (24 de fevereiro de 2020): 5510–15. http://dx.doi.org/10.1073/pnas.1916432117.
Texto completo da fonteJi, Xiaoqiang, Zhi Rao, Wei Zhang, Chang Liu, Zimo Wang, Shuo Zhang, Butian Zhang, Menglei Hu, Peyman Servati e Xiao Xiao. "Airline Point-of-Care System on Seat Belt for Hybrid Physiological Signal Monitoring". Micromachines 13, n.º 11 (1 de novembro de 2022): 1880. http://dx.doi.org/10.3390/mi13111880.
Texto completo da fonteCoelho, Carlos M., Janete Silva, Alfredo F. Pereira, Emanuel Sousa, Nattasuda Taephant, Kullaya Pisitsungkagarn e Jorge A. Santos. "VISUAL-VESTIBULAR AND POSTURAL ANALYSIS OF MOTION SICKNESS, PANIC, AND ACROPHOBIA". Acta Neuropsychologica 15, n.º 1 (12 de março de 2017): 21–33. http://dx.doi.org/10.5604/12321966.1237325.
Texto completo da fonteJing, Yu, Fugui Qi, Fang Yang, Yusen Cao, Mingming Zhu, Zhao Li, Tao Lei, Juanjuan Xia, Jianqi Wang e Guohua Lu. "Respiration Detection of Ground Injured Human Target Using UWB Radar Mounted on a Hovering UAV". Drones 6, n.º 9 (3 de setembro de 2022): 235. http://dx.doi.org/10.3390/drones6090235.
Texto completo da fonteZhang, Ting, Julien Sarrazin, Guido Valerio e Dan Istrate. "Estimation of Human Body Vital Signs Based on 60 GHz Doppler Radar Using a Bound-Constrained Optimization Algorithm". Sensors 18, n.º 7 (12 de julho de 2018): 2254. http://dx.doi.org/10.3390/s18072254.
Texto completo da fontePipke, Matt, Srilakshmi Alla, Jadranka Sekaric, Dylan Richards, Maged Gendy, Sabra Abbott, Daniela Grimaldi, Kathryn Reid e Phyllis Zee. "0275 Deep Learning-based Sleep Detection using Torso Patch Vital Signs Improves Sleep-Wake Detection over Wrist Actigraphy". SLEEP 46, Supplement_1 (1 de maio de 2023): A122. http://dx.doi.org/10.1093/sleep/zsad077.0275.
Texto completo da fonteZareen, Farhath, Mohammed Elazab, Brett Hanzlicek, Adam Doelman, Dennis Bourbeau, Steve JA Majerus, Margot S. Damaser e Robert Karam. "Optimization of activity-driven event detection for long-term ambulatory urodynamics". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 238, n.º 6 (junho de 2024): 608–18. http://dx.doi.org/10.1177/09544119241264304.
Texto completo da fonte