Literatura científica selecionada sobre o tema "Photoperception"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Photoperception".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Photoperception"

1

Devlin, Paul F., e Steve A. Kay. "Circadian Photoperception". Annual Review of Physiology 63, n.º 1 (março de 2001): 677–94. http://dx.doi.org/10.1146/annurev.physiol.63.1.677.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

THOMPSON, L. "Sites of photoperception in white clover". Grass and Forage Science 50, n.º 3 (setembro de 1995): 259–62. http://dx.doi.org/10.1111/j.1365-2494.1995.tb02321.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kehoe, David M., e Arthur R. Grossman. "Complementary chromatic adaptation: photoperception to gene regulation". Seminars in Cell Biology 5, n.º 5 (outubro de 1994): 303–13. http://dx.doi.org/10.1006/scel.1994.1037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Jiang, Ze-Yu, Brenda G. Rushing, Yong Bai, Howard Gest e Carl E. Bauer. "Isolation of Rhodospirillum centenumMutants Defective in Phototactic Colony Motility by Transposon Mutagenesis". Journal of Bacteriology 180, n.º 5 (1 de março de 1998): 1248–55. http://dx.doi.org/10.1128/jb.180.5.1248-1255.1998.

Texto completo da fonte
Resumo:
ABSTRACT The purple photosynthetic bacterium Rhodospirillum centenum is capable of forming swarm colonies that rapidly migrate toward or away from light, depending on the wavelength of excitation. To identify components specific for photoperception, we conducted mini-Tn5-mediated mutagenesis and screened approximately 23,000 transposition events for mutants that failed to respond to either continuous illumination or to a step down in light intensity. A majority of the ca. 250 mutants identified lost the ability to form motile swarm cells on an agar surface. These cells appeared to contain defects in the synthesis or assembly of surface-induced lateral flagella. Another large fraction of mutants that were unresponsive to light were shown to be defective in the formation of a functional photosynthetic apparatus. Several photosensory mutants also were obtained with defects in the perception and transmission of light signals. Twelve mutants in this class were shown to contain disruptions in a chemotaxis operon, and five mutants contained disruptions of components unique to photoperception. It was shown that screening for photosensory defective R. centenumswarm colonies is an effective method for genetic dissection of the mechanism of light sensing in eubacteria.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Furuya, Masaki, e Eberhard Schäfer. "Photoperception and signalling of induction reactions by different phytochromes". Trends in Plant Science 1, n.º 9 (setembro de 1996): 301–7. http://dx.doi.org/10.1016/s1360-1385(96)88176-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Battle, Martin W., Franco Vegliani e Matthew A. Jones. "Shades of green: untying the knots of green photoperception". Journal of Experimental Botany 71, n.º 19 (3 de julho de 2020): 5764–70. http://dx.doi.org/10.1093/jxb/eraa312.

Texto completo da fonte
Resumo:
Abstract The development of economical LED technology has enabled the application of different light qualities and quantities to control plant growth. Although we have a comprehensive understanding of plants’ perception of red and blue light, the lack of a dedicated green light sensor has frustrated our utilization of intermediate wavelengths, with many contradictory reports in the literature. We discuss the contribution of red and blue photoreceptors to green light perception and highlight how green light can be used to improve crop quality. Importantly, our meta-analysis demonstrates that green light perception should instead be considered as a combination of distinct ‘green’ and ‘yellow’ light-induced responses. This distinction will enable clearer interpretation of plants’ behaviour in response to green light as we seek to optimize plant growth and nutritional quality in horticultural contexts.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Schäfer, Eberhard, e Chris Bowler. "Phytochrome‐mediated photoperception and signal transduction in higher plants". EMBO reports 3, n.º 11 (novembro de 2002): 1042–48. http://dx.doi.org/10.1093/embo-reports/kvf222.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Quecini, Vera. "Identification of photoperception and light signal transduction pathways in citrus". Genetics and Molecular Biology 30, n.º 3 suppl (2007): 780–93. http://dx.doi.org/10.1590/s1415-47572007000500007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

HUGHES, J. E., D. C. MORGAN e C. R. BLACK. "Transmission properties of an oak canopy in relation to photoperception". Plant, Cell & Environment 8, n.º 7 (setembro de 1985): 509–16. http://dx.doi.org/10.1111/j.1365-3040.1985.tb01686.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Blatt, Michael R. "TOWARD THE LINK BETWEEN MEMBRANES TRANSPORT AND PHOTOPERCEPTION IN PLANT". Photochemistry and Photobiology 45, s1 (maio de 1987): 933–38. http://dx.doi.org/10.1111/j.1751-1097.1987.tb07904.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Photoperception"

1

Duchêne, Carole. "Light sensing in the Ocean : studying diatom phytochrome photoreceptors". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS164.pdf.

Texto completo da fonte
Resumo:
Les algues marines telles que les diatomées possèdent un large éventail de photorécepteurs de lumière bleue et verte, mais aussi des phytochromes (DPH), capable de réguler l'expression des gènes en réponse à la lumière RL chez la diatomée modèle Phaeodactylum tricornutum (Pt). Cependant, la fonction biologique de ce photorécepteur est encore inconnue. Grâce à un système rapporteur permettant de suivre l'activité de PtDPH in vivo, j’ai pu caractériser ses propriétés photochimiques, modéliser son activité dans différents champs lumineux marins, et montrer que les DPH en détectent les variations liées à la profondeur et la concentration de phytoplancton. J'ai également recherché les DPH dans les génomes et transcriptomes de diverses diatomées et analysé leur distribution dans l'environnement en utilisant les données méta-omiques générées au cours de l'expédition Tara Oceans. Cela a révélé que les diatomées planctoniques du groupe des centriques possédant des DPH sont présentes dans les zones polaires et tempérées, tandis que les diatomées pennées, vivant dans les sédiments peuvent présenter une duplication du gène DPH. Nous avons montré que ces gènes dupliqués ont des propriétés spectrales différentes, et que certaines diatomées benthiques montrent une adaptation spécifique à la lumière R qui pourrait être régulée par DPH. Ce travail apporte de nouvelles connaissances sur les mécanismes de perception de la lumière chez les diatomées, et leurs importances pour coloniser différentes niches environnementales
Light is an essential source of energy and information for photosynthetic organisms. In the marine environment, red and far-red lights are quickly attenuated in the water column compared to blue and green light. Accordingly, predominant marine algae such as diatoms possess a wide array of blue and green light photoreceptors, but also red (R)/far-red (FR) light sensing phytochrome photoreceptors (DPH), capable of regulating gene expression in response to FR light in the model diatom Phaeodactylum tricornutum (Pt). However, the biological function of this photoreceptor is still unknown. By setting up a reporter system to monitor PtDPH activity in vivo, I was able to characterize its photochemical properties, model its activity in different marine light fields, and show that DPHs can detect variations related to depth and phytoplankton concentration. Using bioinformatics approaches, I looked for DPH in the available genomes and transcriptomes of diverse diatoms and analyzed their distribution in the environment using the meta-omics data from the Tara Oceans expedition. This revealed that planktonic diatoms of the centric group possessing DPH are present in temperate and polar regions. In these species DPH may work as sensor of depth and phytoplankton concentration. Pennate diatoms living in sediments can present duplications of the DPH gene. We showed that these duplicated genes can have different spectral properties, and that some benthic diatoms show a specific adaptation to R light that could be regulated by DPH. This work brings new insights into DPH-mediated light perception mechanisms in diatoms, and their significance for colonizing various environmental niches
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Photoperception"

1

Royal Society. Photoperception By Pla. Cambridge University Press, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Nogier, R. Introduction pratique à l'auriculomédecine. La photoperception cutanée. Haug, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Photoperception"

1

Sharrock, Robert A. "Plant Photoperception: the Phytochrome System". In Development, 194–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77043-2_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Asard, Han, e Roland J. Caubergs. "Circadian Rhythms and Photoperception in Plants: The Role of Red Light and Blue Light". In Membranes and Circadian Rythms, 139–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-79903-7_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

"Cutaneous Photoperception". In Auriculotherapy, editado por Raphael Nogier. Stuttgart: Georg Thieme Verlag, 2009. http://dx.doi.org/10.1055/b-0034-65796.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Srivastava, Lalit M. "Photoperception and Signaling". In Plant Growth and Development, 665–716. Elsevier, 2002. http://dx.doi.org/10.1016/b978-012660570-9/50170-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

"Cutaneous Photoperception and Ear Points". In Auriculotherapy, editado por Raphael Nogier. Stuttgart: Georg Thieme Verlag, 2009. http://dx.doi.org/10.1055/b-0034-65797.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

VINCE-PRUE, D., e P. J. LUMSDEN. "INDUCTIVE EVENTS IN THE LEAVES: TIME MEASUREMENT AND PHOTOPERCEPTION IN THE SHORT-DAY PLANT, PHARBITIS NIL". In Manipulation of Flowering, 255–68. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-407-00570-9.50023-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia