Artigos de revistas sobre o tema "Photonic correlation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Photonic correlation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chen, Shuyu, Long Wu, Lu Xu, Yong Zhang e Jianlong Zhang. "Photonic Signal Processing in Phase-Coded Lidar System". Photonics 10, n.º 5 (21 de maio de 2023): 598. http://dx.doi.org/10.3390/photonics10050598.
Texto completo da fonteVatarescu, Andre. "Instantaneous Quantum Description of Photonic Wavefronts and Applications". Quantum Beam Science 6, n.º 4 (30 de setembro de 2022): 29. http://dx.doi.org/10.3390/qubs6040029.
Texto completo da fonteHsiao, Fu-Li, Hsin-Feng Lee, Su-Chao Wang, Yu-Ming Weng e Ying-Pin Tsai. "Artificial Neural Network for Photonic Crystal Band Structure Prediction in Different Geometric Parameters and Refractive Indexes". Electronics 12, n.º 8 (9 de abril de 2023): 1777. http://dx.doi.org/10.3390/electronics12081777.
Texto completo da fonteBourdarot, G., H. Guillet de Chatellus e J.-P. Berger. "Toward a large bandwidth photonic correlator for infrared heterodyne interferometry". Astronomy & Astrophysics 639 (julho de 2020): A53. http://dx.doi.org/10.1051/0004-6361/201937368.
Texto completo da fonteHarten, P. A., R. Osborne, B. Trouvé e U. Gruhler. "Photonic packet processor using a new correlation technique". Electronics Letters 30, n.º 18 (1 de setembro de 1994): 1509–10. http://dx.doi.org/10.1049/el:19941029.
Texto completo da fonteCao, Lianzhen, Xia Liu, Yang Yang, Qinwei Zhang, Jiaqiang Zhao e Huaixin Lu. "Experimentally Demonstrate the Spin-1 Information Entropic Inequality Based on Simulated Photonic Qutrit States". Entropy 22, n.º 2 (15 de fevereiro de 2020): 219. http://dx.doi.org/10.3390/e22020219.
Texto completo da fonteKrupke, Ralph. "(Invited) Correlation Measurements for Carbon Nanotubes with Quantum Defects". ECS Meeting Abstracts MA2024-01, n.º 9 (9 de agosto de 2024): 893. http://dx.doi.org/10.1149/ma2024-019893mtgabs.
Texto completo da fonteBurkov, A. A., e A. Yu Zyuzin. "Correlation function of speckle in reflection from photonic paint". Journal of Experimental and Theoretical Physics Letters 63, n.º 11 (junho de 1996): 878–81. http://dx.doi.org/10.1134/1.567107.
Texto completo da fonteFunk, E. E., e M. Bashkansky. "Microwave photonic direct-sequence transmitter and heterodyne correlation receiver". Journal of Lightwave Technology 21, n.º 12 (dezembro de 2003): 2962–67. http://dx.doi.org/10.1109/jlt.2003.822261.
Texto completo da fonteDaria, Vincent R. "Holographic photonic neuron". Neuromorphic Computing and Engineering 1, n.º 2 (1 de dezembro de 2021): 024009. http://dx.doi.org/10.1088/2634-4386/ac3ba5.
Texto completo da fonteChen, Lawrence R., Maria-Iulia Comanici, Parisa Moslemi, Jingjing Hu e Peter Kung. "A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics". Applied Sciences 9, n.º 2 (15 de janeiro de 2019): 298. http://dx.doi.org/10.3390/app9020298.
Texto completo da fonteChen, Xinyu, Renjie Li, Yueyao Yu, Yuanwen Shen, Wenye Li, Yin Zhang e Zhaoyu Zhang. "POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities". Nanomaterials 12, n.º 24 (9 de dezembro de 2022): 4401. http://dx.doi.org/10.3390/nano12244401.
Texto completo da fonteGao, Jun, Lu-Feng Qiao, Xiao-Feng Lin, Zhi-Qiang Jiao, Zhen Feng, Zheng Zhou, Zhen-Wei Gao et al. "Non-classical photon correlation in a two-dimensional photonic lattice". Optics Express 24, n.º 12 (1 de junho de 2016): 12607. http://dx.doi.org/10.1364/oe.24.012607.
Texto completo da fonteWang, Xiaochun, Meicheng Fu, Heng Yang, Jiali Liao e Xiujian Li. "Temperature and Pulse-Energy Range Suitable for Femtosecond Pulse Transmission in Si Nanowire Waveguide". Applied Sciences 10, n.º 23 (26 de novembro de 2020): 8429. http://dx.doi.org/10.3390/app10238429.
Texto completo da fonteBourdarot, Guillaume, Jean-Philippe Berger e Hugues Guillet de Chatellus. "Bi-directional frequency shifting loops for real-time processing of broadband RF signals". EPJ Web of Conferences 287 (2023): 07024. http://dx.doi.org/10.1051/epjconf/202328707024.
Texto completo da fonteÜcker, Cátia L., Vitor Goetzke, Fábio C. Riemke, Marcelo L. Vitale, Lucas R. Q. de Andrade, Maicon D. Ücker, Eduardo C. Moreira, Mário L. Moreira, Cristiane W. Raubach e Sérgio S. Cava. "Multi-Photonic behavior of Nb2O5 and its correlation with synthetic methods". Journal of Materials Science 56, n.º 13 (12 de janeiro de 2021): 7889–905. http://dx.doi.org/10.1007/s10853-021-05770-z.
Texto completo da fonteCui, Liang, Xiaoying Li e Ningbo Zhao. "Minimizing the frequency correlation of photon pairs in photonic crystal fibers". New Journal of Physics 14, n.º 12 (4 de dezembro de 2012): 123001. http://dx.doi.org/10.1088/1367-2630/14/12/123001.
Texto completo da fonteKitayama, K., N. Wada e H. Sotobayashi. "Architectural considerations for photonic IP router based upon optical code correlation". Journal of Lightwave Technology 18, n.º 12 (2000): 1834–44. http://dx.doi.org/10.1109/50.908749.
Texto completo da fonteSun, Ke, Jun Gao, Ming-Ming Cao, Zhi-Qiang Jiao, Yu Liu, Zhan-Ming Li, Eilon Poem et al. "Mapping and measuring large-scale photonic correlation with single-photon imaging". Optica 6, n.º 3 (28 de fevereiro de 2019): 244. http://dx.doi.org/10.1364/optica.6.000244.
Texto completo da fonteWang, Yao, Xiao-Ling Pang, Yong-Heng Lu, Jun Gao, Yi-Jun Chang, Lu-Feng Qiao, Zhi-Qiang Jiao, Hao Tang e Xian-Min Jin. "Topological protection of two-photon quantum correlation on a photonic chip". Optica 6, n.º 8 (25 de julho de 2019): 955. http://dx.doi.org/10.1364/optica.6.000955.
Texto completo da fonteRockstuhl, Carsten, Ulf Peschel e Falk Lederer. "Correlation between single-cylinder properties and bandgap formation in photonic structures". Optics Letters 31, n.º 11 (1 de junho de 2006): 1741. http://dx.doi.org/10.1364/ol.31.001741.
Texto completo da fonteKalizhanova, Aliya, Murat Kunelbayev, Waldemar Wojcik, Ainur Kozbakova, Baydaulet Urmashev e Assiyat Akhustova. "Demodulation and Vibration Signal Systems for Photonic Fiber Optic Pressure Sensor". International Journal of Mechanics 18 (7 de fevereiro de 2024): 1–8. http://dx.doi.org/10.46300/9104.2024.18.1.
Texto completo da fonteWang, Michelle, Cooper Doyle, Bryn Bell, Matthew J. Collins, Eric Magi, Benjamin J. Eggleton, Mordechai Segev e Andrea Blanco-Redondo. "Topologically protected entangled photonic states". Nanophotonics 8, n.º 8 (9 de maio de 2019): 1327–35. http://dx.doi.org/10.1515/nanoph-2019-0058.
Texto completo da fonteFroufe-Pérez, Luis S., Michael Engel, Juan José Sáenz e Frank Scheffold. "Band gap formation and Anderson localization in disordered photonic materials with structural correlations". Proceedings of the National Academy of Sciences 114, n.º 36 (22 de agosto de 2017): 9570–74. http://dx.doi.org/10.1073/pnas.1705130114.
Texto completo da fonteTamáska, István, Krisztián Kertész, Zófia Vértesy, Zsolt Bálint, András Kun, Shen Horn Yen e László Péter Biró. "Color Changes upon Cooling of Lepidoptera Scales Containing Photonic Nanoarchitectures". Key Engineering Materials 543 (março de 2013): 18–21. http://dx.doi.org/10.4028/www.scientific.net/kem.543.18.
Texto completo da fonteLiu, Zhenye, Wenxin Zhang, Yu Qiao, Lili Qiu e Zihui Meng. "Wearable photonic crystal double network hydrogel sensor based on structural color analysis". Journal of Physics: Conference Series 2842, n.º 1 (1 de setembro de 2024): 012104. http://dx.doi.org/10.1088/1742-6596/2842/1/012104.
Texto completo da fonteWenger, Jérome, e Hervé Rigneault. "Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection". International Journal of Molecular Sciences 11, n.º 1 (13 de janeiro de 2010): 206–21. http://dx.doi.org/10.3390/ijms11010206.
Texto completo da fonteLi, Shuguang, Yanfeng Li, Yuanyuan Zhao, Guiyao Zhou, Ying Han e Lantian Hou. "Correlation between the birefringence and the structural parameter in photonic crystal fiber". Optics & Laser Technology 40, n.º 4 (junho de 2008): 663–67. http://dx.doi.org/10.1016/j.optlastec.2007.09.012.
Texto completo da fonteBai, Xue-Min, Ning Wang, Jun-Qi Li e J. Q. Liang. "The creation of quantum correlation and entropic uncertainty relation in photonic crystals". Quantum Information Processing 15, n.º 7 (15 de março de 2016): 2771–84. http://dx.doi.org/10.1007/s11128-016-1299-7.
Texto completo da fonteHong, Jun, Dongchu Chen, Zhiqiang Peng, Zulin Li, Yong Hu e Jian Guo. "Cross-correlation technology for decreasing the noise figure of microwave photonic link". Optik 169 (setembro de 2018): 208–13. http://dx.doi.org/10.1016/j.ijleo.2018.05.054.
Texto completo da fonteLi, Tian Long, Long Qiu Li, Lin Wang, Guang Yu Zhang e Yao Li. "Numerical and Experimental Study of the Mechanical Properties of Photonic Crystal Film". Advanced Materials Research 531 (junho de 2012): 554–57. http://dx.doi.org/10.4028/www.scientific.net/amr.531.554.
Texto completo da fonteAndre, Vatarescu. "An Open Letter to the 2022 Winners of the Nobel Prize in Physics". IgMin Research 2, n.º 10 (28 de outubro de 2024): 860–61. http://dx.doi.org/10.61927/igmin260.
Texto completo da fonteJiang, Ping, Na Ma, Peng Liu, Wenxuan Wu e Kai Zhang. "An Easy-Implemented On-Chip Waveguide Coupled Single Photon Source Based on Self-Assembled Quantum Dots Membrane". Applied Sciences 11, n.º 2 (13 de janeiro de 2021): 695. http://dx.doi.org/10.3390/app11020695.
Texto completo da fonteZarifi, Atiyeh, Birgit Stiller, Moritz Merklein e Benjamin Eggleton. "High Resolution Brillouin Sensing of Micro-Scale Structures". Applied Sciences 8, n.º 12 (11 de dezembro de 2018): 2572. http://dx.doi.org/10.3390/app8122572.
Texto completo da fonteAkbari Rokn Abadi, Saeedeh, Negin Hashemi Dijujin e Somayyeh Koohi. "Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture". PLOS ONE 16, n.º 1 (15 de janeiro de 2021): e0245095. http://dx.doi.org/10.1371/journal.pone.0245095.
Texto completo da fonteYu, Qian, Chuan Xu, Sixin Chen, Pengcheng Chen, Saiwei Nie, Shijie Ke, Dunzhao Wei, Min Xiao e Yong Zhang. "Manipulating Orbital Angular Momentum Entanglement in Three-Dimensional Spiral Nonlinear Photonic Crystals". Photonics 9, n.º 7 (21 de julho de 2022): 504. http://dx.doi.org/10.3390/photonics9070504.
Texto completo da fonteGhoshal, Sib Krishna, Azmirawahida Zainuddin, Ramli Arifin, M. R. Sahar, Md Supar Rohani e Khaidzir Hamzah. "Samarium Concentration and Optical Correlation of Tellurite Glass". Advanced Materials Research 1107 (junho de 2015): 443–48. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.443.
Texto completo da fonteLenne, P. F., E. Etienne e H. Rigneault. "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures". Applied Physics Letters 80, n.º 22 (3 de junho de 2002): 4106–8. http://dx.doi.org/10.1063/1.1483116.
Texto completo da fonteBiritz, Bertrand. "Non-photonic electron-hadron azimuthal correlation for AuAu, CuCu and pp collisions at". Nuclear Physics A 830, n.º 1-4 (novembro de 2009): 849c—852c. http://dx.doi.org/10.1016/j.nuclphysa.2009.10.076.
Texto completo da fonteFan, Zhiqiang, Qi Qiu, Jun Su, Tianhang Zhang e Ning Yang. "Photonic-Delay Line Cross Correlation Method Based on DWDM for Phase Noise Measurement". IEEE Photonics Journal 10, n.º 1 (fevereiro de 2018): 1–9. http://dx.doi.org/10.1109/jphot.2018.2799591.
Texto completo da fontePiszter, G., K. Kertész, Z. Vértesy, G. I. Márk, Zs Bálint e L. P. Biró. "Structure-Color-Species Correlation in Photonic Nanoarchitectures Occurring in Blue Lycaenid Butterfly Scales". Journal of Nanoscience and Nanotechnology 12, n.º 11 (1 de novembro de 2012): 8822–28. http://dx.doi.org/10.1166/jnn.2012.6803.
Texto completo da fonteKim, Yoo Jung, Michael P. Fitzgerald, Jonathan Lin, Steph Sallum, Yinzi Xin, Nemanja Jovanovic e Sergio Leon-Saval. "Coherent Imaging with Photonic Lanterns". Astrophysical Journal 964, n.º 2 (21 de março de 2024): 113. http://dx.doi.org/10.3847/1538-4357/ad245e.
Texto completo da fonteCasas, Francisco J., David Ortiz, Beatriz Aja, Luisa de la Fuente, Eduardo Artal, Rubén Ruiz e Jesús M. Mirapeix. "A Microwave Polarimeter Demonstrator for Astronomy with Near-Infra-Red Up-Conversion for Optical Correlation and Detection". Sensors 19, n.º 8 (19 de abril de 2019): 1870. http://dx.doi.org/10.3390/s19081870.
Texto completo da fonteSchönhardt, Anja, Dietmar Nau, Christina Bauer, André Christ, Hedi Gräbeldinger e Harald Giessen. "Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2090 (28 de março de 2017): 20160065. http://dx.doi.org/10.1098/rsta.2016.0065.
Texto completo da fonteSong, Shijie, Xiaoke Yi, Lu Gan, Wenjian Yang, Linh Nguyen, Suen Chew, Liwei Li e Robert Minasian. "Photonic-Assisted Scanning Receivers for Microwave Frequency Measurement". Applied Sciences 9, n.º 2 (17 de janeiro de 2019): 328. http://dx.doi.org/10.3390/app9020328.
Texto completo da fonteYang, Shu, Yingwen Wang e Weihong Gao. "3D Modelling for Photonic Crystal Structure in Papilio maackii Wing Scales". Materials 15, n.º 9 (6 de maio de 2022): 3334. http://dx.doi.org/10.3390/ma15093334.
Texto completo da fonteMcMahon, Christopher J., Joshua P. Toomey, Apostolos Argyris e Deb M. Kane. "Complexity mapping of a photonic integrated circuit laser using a correlation-dimension-based approach". Laser Physics 29, n.º 8 (25 de junho de 2019): 086202. http://dx.doi.org/10.1088/1555-6611/ab27bb.
Texto completo da fonteKibria, Refat, Lam A. Bui, Arnan Mitchell e Michael W. Austin. "(IPC) A Photonic Correlation Scheme Using FWM With Phase Management to Achieve Optical Subtraction". IEEE Photonics Journal 5, n.º 6 (dezembro de 2013): 5502209. http://dx.doi.org/10.1109/jphot.2013.2287555.
Texto completo da fonteSekatski, Pavel, Jean-Daniel Bancal, Xavier Valcarce, Ernest Y. Z. Tan, Renato Renner e Nicolas Sangouard. "Device-independent quantum key distribution from generalized CHSH inequalities". Quantum 5 (26 de abril de 2021): 444. http://dx.doi.org/10.22331/q-2021-04-26-444.
Texto completo da fonteМорозов, К. М., А. В. Белоновский e М. А. Калитеевский. "Анализ динамики затухания люминесценции в металл-диэлектрических фотонных структурах с органическими слоями". Физика и техника полупроводников 56, n.º 12 (2022): 1132. http://dx.doi.org/10.21883/ftp.2022.12.54512.4291.
Texto completo da fonte