Artigos de revistas sobre o tema "Photon drag effect"

Siga este link para ver outros tipos de publicações sobre o tema: Photon drag effect.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Photon drag effect".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Shalygin, V. A., M. D. Moldavskaya, S. N. Danilov, I. I. Farbshtein e L. E. Golub. "Circular photon drag effect in bulk semiconductors". Journal of Physics: Conference Series 864 (junho de 2017): 012072. http://dx.doi.org/10.1088/1742-6596/864/1/012072.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Obraztsov, Alexander N., Dmitry A. Lyashenko, Shaoli Fang, Ray H. Baughman, Petr A. Obraztsov, Sergei V. Garnov e Yuri P. Svirko. "Photon drag effect in carbon nanotube yarns". Applied Physics Letters 94, n.º 23 (8 de junho de 2009): 231112. http://dx.doi.org/10.1063/1.3151834.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Rasulov, R. Ya, V. R. Rasulov, I. Eshboltaev e N. Z. Mamadalieva. "Photon-Drag Effect in p-Type Tellurium". Russian Physics Journal 62, n.º 6 (outubro de 2019): 1082–89. http://dx.doi.org/10.1007/s11182-019-01818-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Vasko, F. T. "Photon drag effect in tunnel-coupled quantum wells". Physical Review B 53, n.º 15 (15 de abril de 1996): 9576–78. http://dx.doi.org/10.1103/physrevb.53.9576.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Nunes, O. A. C., D. A. Agrello e A. L. A. Fonseca. "Low-temperature photon-drag effect in magnetic semiconductors". Physics Letters A 266, n.º 4-6 (fevereiro de 2000): 421–24. http://dx.doi.org/10.1016/s0375-9601(00)00055-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Goff, John Eric, e W. L. Schaich. "Theory of the photon-drag effect in simple metals". Physical Review B 61, n.º 15 (15 de abril de 2000): 10471–77. http://dx.doi.org/10.1103/physrevb.61.10471.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rodrigues-Costa, C., e O. A. C. Nunes. "Theory of photon-drag effect in bulk magnetic semiconductors". Physical Review B 46, n.º 23 (15 de dezembro de 1992): 15046–52. http://dx.doi.org/10.1103/physrevb.46.15046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mikheev, Gennady M., Albert G. Nasibulin, Ruslan G. Zonov, Antti Kaskela e Esko I. Kauppinen. "Photon-Drag Effect in Single-Walled Carbon Nanotube Films". Nano Letters 12, n.º 1 (2 de dezembro de 2011): 77–83. http://dx.doi.org/10.1021/nl203003p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Luo, Qinghuan. "The Effect of Radiation Drag on Relativistic Bulk Flows in Active Galactic Nuclei". Publications of the Astronomical Society of Australia 19, n.º 1 (2002): 122–24. http://dx.doi.org/10.1071/as01112.

Texto completo da fonte
Resumo:
AbstractThe effect of radiation drag on relativistic bulk flows is re-examined. Highly relativistic bulk flows in the nuclear region are subject to Compton drag, i.e. radiation deceleration as a result of inverse Compton scattering of ambient soft photon fields from emission from the accretion disk, broad line region, or dusty torus. Possible observational consequences of X-/γ-ray emission produced from Compton drag are specifically discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Rodrigues, C., A. L. A. Fonseca, D. A. Agrello e O. A. C. Nunes. "The phonon-assisted photon-drag effect in a two-dimensional semiconductor quantum-well structure". Superlattices and Microstructures 29, n.º 1 (janeiro de 2001): 33–42. http://dx.doi.org/10.1006/spmi.2000.0909.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Malyutenko, Volodymyr, Vitalii Borblik e Victor Vainberg. "UP-conversion of terahertz radiation induced by photon drag effect". Physica E: Low-dimensional Systems and Nanostructures 20, n.º 3-4 (janeiro de 2004): 563–66. http://dx.doi.org/10.1016/j.physe.2003.09.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Luo, Qinghuan. "The Effect of Nonaxisymmetric Radiative Drag on Relativistic Jets in Active Galactic Nuclei". Publications of the Astronomical Society of Australia 18, n.º 3 (2001): 215–20. http://dx.doi.org/10.1071/as01033.

Texto completo da fonte
Resumo:
AbstractThe effect of nonaxisymmetric radiation drag on relativistic jets in active galactic nuclei (AGN) is discussed. The radiation force due to inverse Compton scattering of photon fields from a noncircular accretion disk is calculated. It is shown that such nonaxisymmetric drag can cause jet path distortion within the subparsec region of the black hole. This subparsec scale distortion is potentially observable with the current VLBI, VLBA techniques. Any modulation of the axially asymmetric distribution of disk emission can result in variability in electromagnetic radiation from the jet.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Luryi, Serge. "Photon-Drag Effect in Intersubband Absorption by a Two-Dimensional Electron Gas". Physical Review Letters 58, n.º 21 (25 de maio de 1987): 2263–66. http://dx.doi.org/10.1103/physrevlett.58.2263.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Załużny, M. "Resonant screening effect on the photon-drag current spectra in quantum wells". Solid State Communications 103, n.º 8 (agosto de 1997): 435–39. http://dx.doi.org/10.1016/s0038-1098(97)00225-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

A. Grinberg, Anatoly, e Serge Luryi. "Theory of the photon-drag effect in a two-dimensional electron gas". Physical Review B 38, n.º 1 (1 de julho de 1988): 87–96. http://dx.doi.org/10.1103/physrevb.38.87.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Kastalsky, A. "Resonant photon-drag effect for interband absorption in a single quantum well". Solid State Communications 68, n.º 10 (dezembro de 1988): 947–51. http://dx.doi.org/10.1016/0038-1098(88)90139-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Torres, Jean-Manuel. "Nanosecond Optical Rectification and Photon Drag Effect in Nanocarbon Thin Films and Wires". Journal of Nanoelectronics and Optoelectronics 4, n.º 2 (1 de agosto de 2009): 247–51. http://dx.doi.org/10.1166/jno.2009.1034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Lee, Hyun C. "On the photon-drag effect of photocurrent of surface states of topological insulators". Physica E: Low-dimensional Systems and Nanostructures 79 (maio de 2016): 44–51. http://dx.doi.org/10.1016/j.physe.2015.12.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Mikheev, K. G., R. G. Zonov, D. L. Bulatov, A. E. Fateev e G. M. Mikheev. "Laser-Induced Graphene on a Polyimide Film: Observation of the Photon Drag Effect". Technical Physics Letters 46, n.º 5 (maio de 2020): 458–61. http://dx.doi.org/10.1134/s1063785020050119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kimmitt, M. F., C. R. Pidgeon, D. A. Jaroszynski, R. J. Bakker, A. F. G. van der Meer e D. Oepts. "Infrared free electron laser measurement of the photon drag effect in P-silicon". International Journal of Infrared and Millimeter Waves 13, n.º 8 (agosto de 1992): 1065–73. http://dx.doi.org/10.1007/bf01009051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Koch, J., e A. D. Wieck. "Photon-drag effect in a two-dimensional electron gas in high magnetic fields". Superlattices and Microstructures 25, n.º 1-2 (janeiro de 1999): 143–48. http://dx.doi.org/10.1006/spmi.1998.0627.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Chen, Jianbin, Hacer Koc, Shengkai Zhao, Kaiyu Wang, Lingfeng Chao e Mustafa Eginligil. "Emerging Nonlinear Photocurrents in Lead Halide Perovskites for Spintronics". Materials 17, n.º 8 (16 de abril de 2024): 1820. http://dx.doi.org/10.3390/ma17081820.

Texto completo da fonte
Resumo:
Lead halide perovskites (LHPs) containing organic parts are emerging optoelectronic materials with a wide range of applications thanks to their high optical absorption, carrier mobility, and easy preparation methods. They possess spin-dependent properties, such as strong spin–orbit coupling (SOC), and are promising for spintronics. The Rashba effect in LHPs can be manipulated by a magnetic field and a polarized light field. Considering the surfaces and interfaces of LHPs, light polarization-dependent optoelectronics of LHPs has attracted attention, especially in terms of spin-dependent photocurrents (SDPs). Currently, there are intense efforts being made in the identification and separation of SDPs and spin-to-charge interconversion in LHP. Here, we provide a comprehensive review of second-order nonlinear photocurrents in LHP in regard to spintronics. First, a detailed background on Rashba SOC and its related effects (including the inverse Rashba–Edelstein effect) is given. Subsequently, nonlinear photo-induced effects leading to SDPs are presented. Then, SDPs due to the photo-induced inverse spin Hall effect and the circular photogalvanic effect, together with photocurrent due to the photon drag effect, are compared. This is followed by the main focus of nonlinear photocurrents in LHPs containing organic parts, starting from fundamentals related to spin-dependent optoelectronics. Finally, we conclude with a brief summary and future prospects.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Zav’yalov, D. V., S. V. Kryuchkov e E. I. Kukhar’. "Electron-photon drag effect in a semiconductor superlattice subjected to a high electric field". Semiconductors 41, n.º 6 (junho de 2007): 704–7. http://dx.doi.org/10.1134/s1063782607060176.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Woerdman, J. P. "Comment on ‘‘Photon-drag effect in intersubband absorption in a two-dimensional electron gas’’". Physical Review Letters 59, n.º 14 (5 de outubro de 1987): 1624. http://dx.doi.org/10.1103/physrevlett.59.1624.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Maysonnave, J., S. Huppert, F. Wang, S. Maero, C. Berger, W. de Heer, T. B. Norris et al. "Terahertz Generation by Dynamical Photon Drag Effect in Graphene Excited by Femtosecond Optical Pulses". Nano Letters 14, n.º 10 (17 de setembro de 2014): 5797–802. http://dx.doi.org/10.1021/nl502684j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Shalygin, V. A., H. Diehl, Ch Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh et al. "Spin photocurrents and the circular photon drag effect in (110)-grown quantum well structures". JETP Letters 84, n.º 10 (janeiro de 2007): 570–76. http://dx.doi.org/10.1134/s0021364006220097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Feitosa, M. I. M., e O. N. Mesquita. "Wall-drag effect on diffusion of colloidal particles near surfaces: A photon correlation study". Physical Review A 44, n.º 10 (1 de novembro de 1991): 6677–85. http://dx.doi.org/10.1103/physreva.44.6677.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Khichar, Vivek, Suresh C. Sharma e Nader Hozhabri. "New features in the surface plasmon induced photon drag effect in noble metal thin films". Journal of Physics Communications 5, n.º 5 (1 de maio de 2021): 055005. http://dx.doi.org/10.1088/2399-6528/abfd42.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Zhu, L., Y. Huang, Z. Yao, B. Quan, L. Zhang, J. Li, C. Gu, X. Xu e Z. Ren. "Enhanced polarization-sensitive terahertz emission from vertically grown graphene by a dynamical photon drag effect". Nanoscale 9, n.º 29 (2017): 10301–11. http://dx.doi.org/10.1039/c7nr02227a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Mikheev, Konstantin G., Aleksandr S. Saushin, Ruslan G. Zonov, Albert G. Nasibulin e Gennady M. Mikheev. "Photon-drag in single-walled carbon nanotube and silver-palladium films: the effect of polarization". Journal of Nanophotonics 10, n.º 1 (5 de novembro de 2015): 012505. http://dx.doi.org/10.1117/1.jnp.10.012505.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Van Oss, R. F., G. H. J. Van Den Oord e M. Kuperus. "Accretion Disk Flares in Energetic Radiation Fields". Symposium - International Astronomical Union 157 (1993): 217–18. http://dx.doi.org/10.1017/s0074180900174157.

Texto completo da fonte
Resumo:
We consider the physics of magnetic flares in the energetic radiation field of an accretion disk corona (ADC). The X-ray emission from these flares is thought to be responsable for the observed hard powerlaw component in the X-ray spectra of galactic black hole candidates in their ‘high’ spectral state. During the flare event (inverse Compton) scattering of soft photons from the underlying disk into hard photons occurs on accelerated electrons in current sheets. The electrons are decelerated by the radiation drag force that results from the up-scattering. This friction-like effect of the intense background radiation field on the motion of the electrons in the sheet can be considered as a form of resistivity in the magnetohydrodynamical picture of the current sheet: Compton resistivity. A spectrum is derived for the up-scattered radiation from current sheets in the ADC and it is found that this spectrum mimics a powerlaw above a critical photon energy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Krevchik, V. D., e A. V. Razumov. "Features of the electron-photon drag effect in a spiral ribbon in the external magnetic field". Physics of the Solid State 53, n.º 12 (dezembro de 2011): 2500–2503. http://dx.doi.org/10.1134/s1063783411120110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Михеев, К. Г., Р. Г. Зонов, Д. Л. Булатов, А. Е. Фатеев e Г. М. Михеев. "Лазерно-индуцированный графен на полиимидной пленке: наблюдение эффекта увлечения". Письма в журнал технической физики 46, n.º 9 (2020): 51. http://dx.doi.org/10.21883/pjtf.2020.09.49375.18152.

Texto completo da fonte
Resumo:
Porous graphene film structures were produced by irradiation of polyimide film with focused continuous wave CO2 laser. Generation of nanosecond pulses of photocurrent was observed in the obtained structures upon excitation by nanosecond laser pulses in a wide range of wavelengths. It is shown that the photocurrent linearly increases with pulsed laser power and its dependence on the angle of light incidence on the film structure is symmetric about the origin. Wavelength dependence of light-to-photocurrent conversion coefficient was measured. The obtained results are explained by photon-drag effect photocurrent generation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ochiai, Tetsuyuki. "Enhanced second-harmonic generation and photon drag effect in a doped graphene placed on a two-dimensional diffraction grating". Journal of the Optical Society of America B 34, n.º 4 (6 de março de 2017): 740. http://dx.doi.org/10.1364/josab.34.000740.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Solanki, Reena, e Seema Agrawal. "Thermoelectric Properties of Zn Nanowires: Phonon Scattering Effect". Research Journal of Chemistry and Environment 26, n.º 5 (25 de abril de 2022): 114–18. http://dx.doi.org/10.25303/2605rjce114118.

Texto completo da fonte
Resumo:
The temperature-dependent thermoelectric power (S) of Zn nanostructures is numerically estimated using a theoretical model. The electron diffusive and phonon drag contributions to thermoelectric power are calculated within the relaxation time approximation. The phonon drag thermopower is an artifact of various operating scattering mechanisms. The anomalous behavior of (S) is successfully estimated in accordance with interaction of heat carrying phonons with impurity, grain boundaries, electrons and phonons. The scattering and transport cross sections are function of phonon frequency  in the present model and produce similar results.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Zhou, Jiawei, Bolin Liao, Bo Qiu, Samuel Huberman, Keivan Esfarjani, Mildred S. Dresselhaus e Gang Chen. "Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion". Proceedings of the National Academy of Sciences 112, n.º 48 (16 de novembro de 2015): 14777–82. http://dx.doi.org/10.1073/pnas.1512328112.

Texto completo da fonte
Resumo:
Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect—a coupling phenomenon between electrons and nonequilibrium phonons—in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Kuleyev I. G. e Kuleyev I. I. "The Effect of phonon focusing on the mutual drag of electrons and phonons and the electrical resistance of potassium". Physics of the Solid State 64, n.º 8 (2022): 901. http://dx.doi.org/10.21883/pss.2022.08.54601.324.

Texto completo da fonte
Resumo:
The effect influence of elastic energy anisotropy on the mutual drag of electrons and phonons and the electrical resistance of potassium crystals at low temperatures have investigated. We have analyzed the momentum exchange between the electron and three phonon flows corresponding to three branches of the vibrational spectrum in the hydrodynamic approximation. The actual mechanisms of phonon momentum relaxation have taken into account: scattering at sample boundaries, dislocations, and in the processes of phonon-phonon transfer. It have shown that in the limiting case of strong mutual drag of electrons and phonons, the electrical resistance will be much lower than that given by the Bloch--Gruneisen theory, and the phonon and electron drift velocities are close and they are determined by the total phonon relaxation rate in resistive scattering processes. In the opposite case, when resistive scattering processes dominate for phonons and the phonon system remains in equilibrium, then the electrical resistance follows the Bloch--Gruneisen theory. In this case, the drift velocities of all modes are different and much less than the electron drift velocity. Keywords: electrical resistance, elastic anisotropy, electron-phonon relaxation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Suresha, Kasala. "Phonon Drag Thermopower in Silicene in Equipartition Regime at Room Temperature". International Journal for Research in Applied Science and Engineering Technology 9, n.º 11 (30 de novembro de 2021): 399–403. http://dx.doi.org/10.22214/ijraset.2021.38818.

Texto completo da fonte
Resumo:
Abstract: Similar to graphene, zero band gap limits the application of Silicene in nanoelectronics despite of its high carrier mobility. In this article we calculate the contribution of electron-phonon interaction to thermoelectric effects in silicene. One considers the case of free standing silicene taking into account interaction with intrinsic acoustic phonons. The temperature considered here is at room temperature. We noticed that the contribution to thermoelectromotive force due to electron drag by phonons is determined by the Fermi energy. The explicit temperature dependence of the contribution to thermoelectromotive force deriving from by phonons is weak in contrast to that due to diffusion, which is directly proportional to temperature. Thus a theoretical limit has been established for a possible increase of the thermoelectromotive force through electron drag by the intrinsic phonons of silicene. Keywords: Phonon-drag thermopower, electron-diffusion thermopower, silicene, fermi energy, zero band gap
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Кулеев, И. Г., e И. И. Кулеев. "Влияние фокусировки на взаимное увлечение электронов и фононов и электросопротивление кристаллов калия". Физика твердого тела 64, n.º 8 (2022): 899. http://dx.doi.org/10.21883/ftt.2022.08.52680.324.

Texto completo da fonte
Resumo:
The effect influence of elastic energy anisotropy on the mutual drag of electrons and phonons and the electrical resistance of potassium crystals at low temperatures have investigated. We have analyzed the momentum exchange between the electron and three phonon flows corresponding to three branches of the vibrational spectrum in the hydrodynamic approximation. The actual mechanisms of phonon momentum relaxation have taken into account: scattering at sample boundaries, dislocations, and in the processes of phonon-phonon transfer. It have shown that in the limiting case of strong mutual drag of electrons and phonons, the electrical resistance will be much lower than that given by the Bloch–Grüneisen theory, and the phonon and electron drift velocities are close and they are determined by the total phonon relaxation rate in resistive scattering processes. In the opposite case, when resistive scattering processes dominate for phonons and the phonon system remains in equilibrium, then the electrical resistance follows the Bloch–Grüneisen theory. In this case, the drift velocities of all modes are different and much less than the electron drift velocity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Pokharel, Mani, Huaizhou Zhao, Kevin Lukas, Zhifeng Ren, Cyril Opeil e Bogdan Mihaila. "Phonon drag effect in nanocomposite FeSb2". MRS Communications 3, n.º 1 (março de 2013): 31–36. http://dx.doi.org/10.1557/mrc.2013.7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Lopez-Castillo, J. M., A. Amara, S. Jandl, J. P. Jay-Gerin, C. Ayache e M. J. Aubin. "Phonon-drag effect inTiSe2−xSxmixed compounds". Physical Review B 36, n.º 8 (15 de setembro de 1987): 4249–53. http://dx.doi.org/10.1103/physrevb.36.4249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wu, M. W., N. J. M. Horing e H. L. Cui. "Phonon-drag effects on thermoelectric power". Physical Review B 54, n.º 8 (15 de agosto de 1996): 5438–43. http://dx.doi.org/10.1103/physrevb.54.5438.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Lehmann, D., Cz Jasiukiewicz, R. E. Strickland, K. R. Strickland, A. J. Kent e T. Paszkiewicz. "Phonon-drag effect in 2D hole gases". Physica B: Condensed Matter 219-220 (abril de 1996): 25–27. http://dx.doi.org/10.1016/0921-4526(95)00638-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Lyapilin, Igor, e Mikhail Okorokov. "THE INFLUENCE OF “INJECTED” AND “THERMAL” MAGNONS ON A SPIN WAVE CURRENT AND DRAG EFFECT IN HYBRID STRUCTURES". EPJ Web of Conferences 185 (2018): 01022. http://dx.doi.org/10.1051/epjconf/201818501022.

Texto completo da fonte
Resumo:
The formation of the two: injected and thermally excited, different in energies magnon subsystems and the influence of its interaction with phonons and between on drag effect under spin Seebeck effect conditions in the magnetic insulator part of the metal/ferromagnetic insulator/metal structure is studied. The analysis of the macroscopic momentum balance equations of the systems of interest conducted for different ratios of the drift velocities of the magnon and phonon currents show that the injected magnons relaxation on the thermal ones is possible to be dominant over its relaxation on phonons. This interaction will be the defining in the forming of the temperature dependence of the spin-wave current under spin Seebeck effect conditions, and inelastic part of the magnon-magnon interaction is the dominant spin relaxation mechanism.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ikeda, Hiroya, Takuro Oda, Yuhei Suzuki, Yoshinari Kamakura e Faiz Salleh. "Study on Phonon Drag Effect and Phonon Transport in Thin Si-on-Insulator Layers". Advanced Materials Research 1117 (julho de 2015): 86–89. http://dx.doi.org/10.4028/www.scientific.net/amr.1117.86.

Texto completo da fonte
Resumo:
The Seebeck coefficient of P-doped ultrathin Si-on-insulator (SOI) layers is investigated for the application to a highly-sensitive thermopile infrared photodetector. It is found that the Seebeck coefficient originating from the phonon drag is significant in the lightly doped region and depends on the carrier concentration with increasing carrier concentration above ~5×1018 cm-3. On the basis of Seebeck coefficient calculations considering both electron and phonon distribution, the phonon-drag part of SOI Seebeck coefficient is mainly governed by the phonon transport, in which the phonon-phonon scattering process is dominant rather than the crystal boundary scattering even in the SOI layer with a thickness of 10 nm. This fact suggests that the phonon-drag Seebeck coefficient is influenced by the phonon modes different from the thermal conductivity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Fal'ko, V. I., e S. V. Iordanskii. "Electron-phonon drag effect at 2D Landau levels". Journal of Physics: Condensed Matter 4, n.º 46 (16 de novembro de 1992): 9201–12. http://dx.doi.org/10.1088/0953-8984/4/46/023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Pokharel, Mani, Machhindra Koirala, Huaizhou Zhao, Kevin Lukas, Zhifeng Ren e Cyril Opeil. "Thermoelectric properties of Bi-FeSb2 nanocomposites: Evidence for phonon-drag effect". MRS Proceedings 1490 (2012): 115–20. http://dx.doi.org/10.1557/opl.2012.1642.

Texto completo da fonte
Resumo:
AbstractThe thermoelectric properties of Bi-FeSb2 nanocomposites are reported. The electrical resistivity and the Seebeck coefficient measurements show a significant dependence on bismuth concentration. Our results reveal that the shifting of the Seebeck peak in FeSb2 nanocomposites is purely a grain size-effect. The thermal conductivity data indicates a presence of an electron-phonon interaction. Over all, our analysis of the the thermoelectric properties of Bi-FeSb2 nanocomposites provide additional evidence for phonon-drag in FeSb2.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Naidyuk, Yuri G., e Igor K. Yanson. "Phonon drag effects in point heterocontacts between metals". Physica B: Condensed Matter 169, n.º 1-4 (fevereiro de 1991): 479–80. http://dx.doi.org/10.1016/0921-4526(91)90285-m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Adachi, Hiroto, Ken-ichi Uchida, Eiji Saitoh, Jun-ichiro Ohe, Saburo Takahashi e Sadamichi Maekawa. "Gigantic enhancement of spin Seebeck effect by phonon drag". Applied Physics Letters 97, n.º 25 (20 de dezembro de 2010): 252506. http://dx.doi.org/10.1063/1.3529944.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Chen, Xin. "Local-Field Effects on Photon Drag in Multiple Quantum Wells". Physica Scripta 58, n.º 4 (1 de outubro de 1998): 377–82. http://dx.doi.org/10.1088/0031-8949/58/4/014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia