Literatura científica selecionada sobre o tema "Photodissociation Region"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Photodissociation Region".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Photodissociation Region"
Tielens, A. G. G. M., e D. Hollenbach. "Photodissociation Regions - Part Two - a Model for the Orion Photodissociation Region". Astrophysical Journal 291 (abril de 1985): 747. http://dx.doi.org/10.1086/163112.
Texto completo da fonteTielens, A. G. G. M., e D. Hollenbach. "Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region". Astrophysical Journal 291 (abril de 1985): 722. http://dx.doi.org/10.1086/163111.
Texto completo da fonteKlein, Randolf, Alexander Reedy, Christian Fischer, Leslie W. Looney, Sebastian Colditz, Dario Fadda, Alexander G. G. M. Tielens e Willam D. Vacca. "The Photodissociation and Ionization Fronts in M17-SW Localized with FIFI-LS on Board SOFIA". Astrophysical Journal 945, n.º 1 (1 de março de 2023): 29. http://dx.doi.org/10.3847/1538-4357/acb823.
Texto completo da fonteEscalante, V., e A. Góngora-T. "Photodissociation Regions in Planetary Nebulae". Symposium - International Astronomical Union 155 (1993): 220. http://dx.doi.org/10.1017/s0074180900170822.
Texto completo da fonteBisbas, Thomas G., Jonathan C. Tan e Kei E. I. Tanaka. "Photodissociation region diagnostics across galactic environments". Monthly Notices of the Royal Astronomical Society 502, n.º 2 (15 de janeiro de 2021): 2701–32. http://dx.doi.org/10.1093/mnras/stab121.
Texto completo da fonteTielens, A. G. G. M. "Photodissociation Regions and Planetary Nebulae". Symposium - International Astronomical Union 155 (1993): 155–62. http://dx.doi.org/10.1017/s0074180900170330.
Texto completo da fonteHartquist, T. W., e A. Sternberg. "Photodissociation-region models of interstellar hydroxyl masers". Monthly Notices of the Royal Astronomical Society 248, n.º 1 (janeiro de 1991): 48–51. http://dx.doi.org/10.1093/mnras/248.1.48.
Texto completo da fontePellegrini, E. W., J. A. Baldwin, C. L. Brogan, M. M. Hanson, N. P. Abel, G. J. Ferland, H. B. Nemala, G. Shaw e T. H. Troland. "A Magnetically Supported Photodissociation Region in M17". Astrophysical Journal 658, n.º 2 (abril de 2007): 1119–35. http://dx.doi.org/10.1086/511258.
Texto completo da fonteGuzmán, Viviana V., Jérôme Pety, Pierre Gratier, Javier R. Goicoechea, Maryvonne Gerin, Evelyne Roueff, Franck Le Petit e Jacques Le Bourlot. "Chemical complexity in the Horsehead photodissociation region". Faraday Discuss. 168 (2014): 103–27. http://dx.doi.org/10.1039/c3fd00114h.
Texto completo da fonteFederman, S. R., D. C. Knauth, David L. Lambert e B‐G Andersson. "Probing the Photodissociation Region toward HD 200775". Astrophysical Journal 489, n.º 2 (10 de novembro de 1997): 758–65. http://dx.doi.org/10.1086/304804.
Texto completo da fonteTeses / dissertações sobre o assunto "Photodissociation Region"
Guzman, Veloso Viviana. "Physical and Chemical Conditions in the Horsehead Photodissociation Region". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00950116.
Texto completo da fonteGuzman, Veloso Viviana. "Physical and chemical conditions in the horsehead photodissociation region". Paris 6, 2013. http://www.theses.fr/2013PA066526.
Texto completo da fonteMolecular lines are used to trace the structure of the interstellar medium and the physical conditions of the gas in different environments, from high-z galaxies to protoplanetary disks. To fully benefit from the diagnostic power of molecular lines, the formation and destruction paths of the molecules, including the interplay between gas-phase and grain surface chemistry, must be quantitatively understood. Well-defined sets of observations of simple template sources are key to benchmark the predictions of theoretical models. With that motivation, this thesis is focused on the observation and analysis of an unbiased spectral line survey at 3, 2 and 1mm with the IRAM-30m telescope in the Horsehead nebula, with an unprecedented combination of bandwidth, high spectral resolution and sensitivity. Two positions were observed: the warm photodissociation region (PDR) and a cold condensation shielded from the UV field. Approximately 30 species, with up to 7 atoms plus their isotopologues, are detected. These data are complemented by high-angular resolution IRAM-PdB interferometric maps of specific species. The results of this thesis include the detection of CF+, a new diagnostic of the UV illuminated gas; the detection of a new species in the ISM, tentatively attributed to C3H+; a deep study of the abundance, spatial distribution and excitation conditions of H2CO, CH3OH and CH3CN, which reveals that photo-desorption of ices is an efficient mechanism to re- lease molecules into the gas phase; and the first detection of the complex organic molecules, HCOOH, CH2CO, CH3CHO and CH3CCH in a PDR, which reveals the degree of chemical complexity reached in the UV illuminated neutral gas
洪美思 e Mei-sze Hung. "Investigation of the Franck-Condon region photodissociation dynamics of linear and cyclic nitroalkanes using resonance Raman spectroscopy". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215336.
Texto completo da fonteHung, Mei-sze. "Investigation of the Franck-Condon region photodissociation dynamics of linear and cyclic nitroalkanes using resonance Raman spectroscopy /". Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19945863.
Texto completo da fonteChampion, Jason. "Photoevaporation des disques protoplanétaires par les photons UV d’étoiles massives proches : observation de proplyds et modélisation". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30392/document.
Texto completo da fonteProtoplanetary disks are found around young stars, and represent the embryonic stage of planetary systems. At different phases of their evolution, disks may undergo substantial mass-loss by photoevaporation: energetic photons from the central or a nearby star heat the disk, hence particles can escape the gravitational potential and the disk loses mass. However, this mechanism, and the underlying physics regulating photoevaporation, have not been well constrained by observations so far. The aims of this thesis are to study photoevaporation, in the specific case when it is driven by far-UV photons, to identify the main physical parameters (density, temperature) and processes (gas heating and cooling mechanisms) that are involved, and to estimate its impact on the disk dynamical evolution. The study relies on coupling observations and models of disks being photoevaporated by UV photons coming from neighbouring massive star(s). Those objects, also known as "proplyds", appear as disks surrounded by a large cometary shaped envelope fed by the photoevaporation flows. Using a 1D code of the photodissociation region, I developed a model for the far-IR emission of proplyds. This model was used to interpret observations, mainly obtained with the Herschel Space Observatory, of four proplyds. We found similar physical conditions at their disk surface: a density of the order of 10 6 cm and a temperature about 1000 K. We found that this temperature is maintained by a dynamical equilibrium: if the disk surface cools, its mass-loss rate declines and the surrounding envelope is reduced. Consequently, the attenuation of the UV radiation field by the envelope decreases and the disk surface, receiving more UV photons, heats up. Most of the disk is thus able to escape through photoevaporation flows leading to mass-loss rates of the order of 10 -7 solar mass per year or more, in good agreement with earlier spectroscopic observations of ionised gas tracers. Following this work, I developed a 1D hydrodynamical code to study the dynamical evolution of an externally illuminated protoplanetary disk. [...]
Zannese, Marion. "Haute excitation de molécules dans les régions irradiées de formation stellaire et planétaire observées par le James Webb Space Telescope". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP082.
Texto completo da fonteRadiative feedback from massive stars, which heats and disperses the gas in the surrounding cloud, is a dominant mechanism limiting stellar and planetary formation. Indeed, observations show that only 1-5% of the mass of molecular clouds is converted into stars. In this thesis, I focused on the neutral, warm and irradiated regions between ionized and cold molecular media. In particular, I investigated how the excitation at the formation of certain molecules (OH, CH+ and CH3+) enabled simple and robust diagnostics to constrain the physical and chemical parameters of these regions. To do this, I coupled detailed gas modeling, using quantum dynamics data, with analysis of observations from the James Webb Space Telescope. The spectral coverage, high sensitivity and angular resolution of the JWST give unprecedented access to the chemistry and microphysics of the small-scale substructures of photodissociation regions (PDR) and the warm regions of protoplanetary disks (inner region or photoevaporated wind). My thesis is part of the analysis of data from the PDRs4All program observing the Orion Bar and protoplanetary disks in the line of sight (in particular d203-506).In preparation for the observations, I first concentrated on predicting what the JWST might detect. I studied the prompt emission of rotationally excited OH produced by the photodissociation of water. To this end, I used the Meudon PDR code, which self-consistently calculates the radiative transfer, the chemistry and the heat balance in PDRs. By implementing prompt emission in this code, we then show that only sufficiently dense and warm environments allow OH excitation at formation. The second part of my thesis presents the analysis of spectra obtained with the JWST. The signatures of highly excited molecules at formation observed in these data and analyzed with single-zone excitation models, based on quantum dynamics data, have revealed a particularly active chemistry in warm, irradiated regions. In the Orion Bar and d203-506, we reveal the detection of OH, CH+ and CH3+ as well as their excitation at formation, allowing us to constrain the chemistry in action. Indeed, OH rotational emission, previously modeled and detected in the mid-infrared, reveals the photodissociation of water. The near-infrared emission of OH and CH+ traces the formation and excitation of these species by chemical pumping via reactions with H2: X + H2 → XH* + H. These emission lines reveal a very active water formation and destruction cycle in d203-506 (O <=> OH <=> H2O), as well as the beginning of the carbon chemistry chain (C+ → CH+ → CH2+ → CH3+) in the PDR and disk. Excitation models have enabled us to identify the observed excitation processes and translate the measured line intensities into formation and destruction rates of these species. They also enable us to constrain the physical conditions of the medium, and can be used to determine locally, from the intensity of the observed lines, the intensity of the UV field (for the photodissociation of water) or the density of the gas (for prompt emission), which are essential ingredients determining the initial conditions of stellar and planetary formation. These new diagnostics will be key to the analysis of many JWST observations, since these processes are expected to be detected in a multitude of astrophysical objects with warm, irradiated regions (protostars, outflow, planetary nebulae, etc.)
Parikka, Anna. "Properties and evolution of dense structures in the interstellar medium". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112221/document.
Texto completo da fonteIn this thesis I present a study of two kinds of dense ISM structures: compact cold sources detected by Planck and dense condensations in a photodissociation region (PDR), namely the Orion Bar detected by ground-based and Herschel telescopes. Both kinds of structures are closely related to star formation. The cold sources are investigated as potentially gravitationally bound, prestellar, objects. The Orion Bar is a highly FUV-illuminated (G0=104) prototypical PDR, with several known protoplanetary disks, illuminated by the young Trapezium stars.First I introduce a paper published in A&A: The Physical state of selected cold clumps. In this paper we compared the Herschel dust continuum observations from the open time key program Galactic Cold Cores to ground based molecular line observations from the 20-m radio telescope of the Onsala Space Observatory in Sweden. The clumps were selected based on their brightness and low dust color temperatures (T=10-15 K). We calculated the virial and Bonnor-Ebert masses and compared them to the masses calculated from the observations. The results indicate that most of the observed cold clumps are not necessarily prestellar.Then I move on to the warm and dense condensations of the ISM. In my study of the Orion Bar, I use observations from PACS instrument on board Herschel from the open time program Unveiling the origin and excitation mechanisms of the warm CO, OH and CH+. I present maps of 110”x110” of the methylidyne cation (CH+ J=3-2), OH doublets at 84 µm, and high-J CO (J=19-18). This is the first time that these PDR tracers are presented in such a high spatial resolution and high signal-to-noise ratio. The CH+ and OH have critical densities (1010 cm-3) and upper level energy temperatures (250 K). In addition the endothermicity of the CH+ + H2 reaction (4300 K) that forms CH+ is comparable to the activation barrier of the O + H2 reaction (4800 K) forming OH. Given these similarities it is interesting to compare their emission. The spatial distribution of CH+ and OH shows the same clumpy structure of the Bar that has been seen in other observations. The morphology of CH+ and H2 confirms that CH+ formation and excitation is strongly dependent on the vibrationally excited H2, while OH is not. The peak in the OH 84 µm emission corresponds to a bright young object, identified as the externally illuminated protoplanetary disk 244-440.Finally, I study the high-J CO in the Orion Bar. I also introduce low- and mid-J CO observations of the area. The high-J CO morphology shows a clumpy structure in the Bar and we establish a link between the dense core of the clumps, traced in CS J=2-1 by Lee et al. (2013) and in H13CN by Lis and Schilke (2003). We also show that the high-J CO is mainly excited by the UV heating
Chrysostomou, Antonio. "Molecular hydrogen line emission from photodissociation regions". Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/27794.
Texto completo da fonteKlumpe, Eric William. "Large-scale observations of H₂ emission in photodissociation regions /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Texto completo da fonteHosokawa, Takashi. "Dynamical expansion of ionization and photodissociation regions and triggered star formation". 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145081.
Texto completo da fonte0048
新制・課程博士
博士(理学)
甲第11313号
理博第2871号
新制||理||1429(附属図書館)
22956
UT51-2005-D64
京都大学大学院理学研究科物理学・宇宙物理学専攻
(主査)教授 嶺重 慎, 教授 中村 卓史, 助教授 鶴 剛
学位規則第4条第1項該当
Livros sobre o assunto "Photodissociation Region"
Hollenbach, David. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteAntonella, Natta, e United States. National Aeronautics and Space Administration., eds. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteHollenbach, David. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteHollenbach, David. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Photodissociation Region"
Wolfire, Mark G., e Michael J. Kaufman. "Photodissociation Region". In Encyclopedia of Astrobiology, 1868–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1197.
Texto completo da fonteWolfire, Mark G., e Michael J. Kaufman. "Photodissociation Region". In Encyclopedia of Astrobiology, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1197-8.
Texto completo da fonteWolfire, Mark G., e Michael J. Kaufman. "Photodissociation Region". In Encyclopedia of Astrobiology, 2294–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1197.
Texto completo da fonteRostas, F. "Photoabsorption and Photodissociation of CO in the 900–1200 Å Region". In Molecular Astrophysics, 704–5. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5432-8_46.
Texto completo da fonteMartín-Pintado, Jesús, e Asunción Fuente. "High-density filaments in the photodissociation region (PDR) associated with NGC 7023". In ESO Astrophysics Symposia, 214–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-540-69999-6_31.
Texto completo da fonteWolfire, Mark G., e Michael J. Kaufman. "Photodissociation Regions". In Encyclopedia of Astrobiology, 1236–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1197.
Texto completo da fonteSternberg, A. "Photodissociation Regions". In Springer Proceedings in Physics, 423–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-18902-9_75.
Texto completo da fonteTielens, A. G. G. M. "Photodissociation Regions and Planetary Nebulae". In Planetary Nebulae, 155–62. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2088-3_43.
Texto completo da fonteEscalante, V., e A. Góngora-T. "Photodissociation Regions in Planetary Nebulae". In Planetary Nebulae, 220. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2088-3_92.
Texto completo da fonteGraham, James R., T. M. Herbst, S. Beckwith, K. Matthews, G. Neugebauer, E. Serabyn e B. T. Soifer. "Photodissociation Regions in Young PN". In Infrared Astronomy with Arrays, 69–72. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1070-9_15.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Photodissociation Region"
Johnson, Alan E., Anne B. Myers, Sanford Ruhman e Uri Banin. "Resonance Raman studies of I 3 – photodissociation in solution". In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sfb4.
Texto completo da fonteJohnston, M. V., P. L. Ross, S. E. Van Bramer e E. D. Leavitt. "Unimolecular Photochemistry Studied by Photodissociation-Photoionization Mass Spectrometry". In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/laca.1994.tub.8.
Texto completo da fonteKanda, Kazuhiro, Koichiro Mitsuke, Kaoru Suzuki e Toshio Ibuki. "Photodissociation of Butyl Cyanides and Butyl Isocyanides in the Vacuum UV Region". In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436423.
Texto completo da fonteBaranov, V. Yu, A. P. Dyadkin, Yu A. Kolesnikov, A. A. Kotov, V. P. Novikov, S. V. Pigulskii, A. S. Razumov e A. I. Starodubtsev. "Secondary Chemical Reaction Effects Upon Photodissociation of UF6". In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cwf62.
Texto completo da fonteMamilov, S. A., S. S. Esman, M. M. Asimov e A. I. Gisbrecht. "Quantum yields of the photodissociation of HbO2in the visible and near IR spectral region". In Eighteenth International School on Quantum Electronics: Laser Physics and Applications, editado por Tanja Dreischuh, Sanka Gateva e Alexandros Serafetinides. SPIE, 2015. http://dx.doi.org/10.1117/12.2175629.
Texto completo da fontePomelnikov, I. A., D. S. Riashchikov e N. E. Molevich. "On the possible origin of substructures observed in the Orion Bar PDR". In 51-st All-Russian with international participation student scientific conference "Physics of Space", 157–60. Ural University Press, 2024. http://dx.doi.org/10.15826/b978-5-7996-3848-1.25.
Texto completo da fonteXie, Xiaoliang, Robert Dunn e John D. Simon. "Picosecond Polarization Studies of Protein Relaxation". In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.mc21.
Texto completo da fonteBaldwin, K. G. H., S. T. Gibson, B. R. Lewis, J. H. Carver e T. J. McIlrath. "Four Wave Difference Frequency Generation at 124nm for High Resolution Photoabsorption Studies of O2". In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.tua7.
Texto completo da fonteKiseleva, M. B., G. Y. Zelikina, M. V. Buturlimova e K. G. Zolotarev. "Collision-induced absorption of mixture of oxygen with argon in the region of the Herzberg photodissociation continuum". In SPIE Proceedings, editado por Leonid N. Sinitsa e Semen N. Mikhailenko. SPIE, 2004. http://dx.doi.org/10.1117/12.545662.
Texto completo da fonteKorn, G., O. Kittelmann, J. Ringling, A. Nazarkin e I. V. Hertel. "Generation of tunable femtosecond VUV pulses around 100nm by resonant and near resonant four-wave difference frequency mixing". In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.sab5.
Texto completo da fonte