Artigos de revistas sobre o tema "Photobiocatalysis"

Siga este link para ver outros tipos de publicações sobre o tema: Photobiocatalysis.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Photobiocatalysis".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Harrison, Wesley, Xiaoqiang Huang e Huimin Zhao. "Photobiocatalysis for Abiological Transformations". Accounts of Chemical Research 55, n.º 8 (30 de março de 2022): 1087–96. http://dx.doi.org/10.1021/acs.accounts.1c00719.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Gonçalves, Leticia C. P., Hamid R. Mansouri, Shadi PourMehdi, Mohamed Abdellah, Bruna S. Fadiga, Erick L. Bastos, Jacinto Sá, Marko D. Mihovilovic e Florian Rudroff. "Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions". Catalysis Science & Technology 9, n.º 10 (2019): 2682–88. http://dx.doi.org/10.1039/c9cy00496c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Gonçalves, Leticia C. P., Hamid R. Mansouri, Erick L. Bastos, Mohamed Abdellah, Bruna S. Fadiga, Jacinto Sá, Florian Rudroff e Marko D. Mihovilovic. "Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation". Catalysis Science & Technology 9, n.º 6 (2019): 1365–71. http://dx.doi.org/10.1039/c8cy02524j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Zhu, Dunming, e Ling Hua. "Photobiocatalysis enables asymmetric Csp3–Csp3 cross-electrophile coupling". Chem Catalysis 2, n.º 10 (outubro de 2022): 2429–31. http://dx.doi.org/10.1016/j.checat.2022.09.041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Maciá-Agulló, Juan Antonio, Avelino Corma e Hermenegildo Garcia. "Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes". Chemistry - A European Journal 21, n.º 31 (26 de maio de 2015): 10940–59. http://dx.doi.org/10.1002/chem.201406437.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Blossom, Benedikt M., David A. Russo, Raushan K. Singh, Bart van Oort, Malene B. Keller, Tor I. Simonsen, Alixander Perzon et al. "Photobiocatalysis by a Lytic Polysaccharide Monooxygenase Using Intermittent Illumination". ACS Sustainable Chemistry & Engineering 8, n.º 25 (21 de maio de 2020): 9301–10. http://dx.doi.org/10.1021/acssuschemeng.0c00702.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

MARUTHAMUTHU, P., S. MUTHU, K. GURUNATHAN, M. ASHOKKUMAR e M. SASTRI. "Photobiocatalysis: hydrogen evolution using a semiconductor coupled with photosynthetic bacteria". International Journal of Hydrogen Energy 17, n.º 11 (novembro de 1992): 863–66. http://dx.doi.org/10.1016/0360-3199(92)90036-v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Macia-Agullo, Juan Antonio, Avelino Corma e Hermenegildo Garcia. "ChemInform Abstract: Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes". ChemInform 46, n.º 38 (setembro de 2015): no. http://dx.doi.org/10.1002/chin.201538283.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wang, Zijuan, Dong Gao, Hao Geng e Chengfen Xing. "Enhancing hydrogen production by photobiocatalysis through Rhodopseudomonas palustris coupled with conjugated polymers". Journal of Materials Chemistry A 9, n.º 35 (2021): 19788–95. http://dx.doi.org/10.1039/d1ta01019k.

Texto completo da fonte
Resumo:
Herein, a feasible and simple bio-hybrid complex based on water-soluble conjugated polymers and Rhodopseudomonas palustris (R. palustris), one kind of photosynthetic bacteria, was constructed for enhancing photocatalytic hydrogen production.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lee, Sahng Ha, Da Som Choi, Su Keun Kuk e Chan Beum Park. "Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons". Angewandte Chemie International Edition 57, n.º 27 (2 de julho de 2018): 7958–85. http://dx.doi.org/10.1002/anie.201710070.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Wen, Donghui, Guozheng Li, Rui Xing, Seongjun Park e Bruce E. Rittmann. "2,4-DNT removal in intimately coupled photobiocatalysis: the roles of adsorption, photolysis, photocatalysis, and biotransformation". Applied Microbiology and Biotechnology 95, n.º 1 (19 de novembro de 2011): 263–72. http://dx.doi.org/10.1007/s00253-011-3692-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hobisch, Markus, Jelena Spasic, Lenny Malihan‐Yap, Giovanni Davide Barone, Kathrin Castiglione, Paula Tamagnini, Selin Kara e Robert Kourist. "Internal Illumination to Overcome the Cell Density Limitation in the Scale‐up of Whole‐Cell Photobiocatalysis". ChemSusChem 14, n.º 15 (6 de julho de 2021): 3219–25. http://dx.doi.org/10.1002/cssc.202100832.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Shumyantseva, Victoria V., Polina I. Koroleva, Tatiana V. Bulko e Lyubov E. Agafonova. "Alternative Electron Sources for Cytochrome P450s Catalytic Cycle: Biosensing and Biosynthetic Application". Processes 11, n.º 6 (13 de junho de 2023): 1801. http://dx.doi.org/10.3390/pr11061801.

Texto completo da fonte
Resumo:
The functional significance of cytochrome P450s (CYP) enzymes is their ability to catalyze the biotransformation of xenobiotics and endogenous compounds. P450 enzymes catalyze regio- and stereoselective oxidations of C-C and C-H bonds in the presence of oxygen as a cosubstrate. Initiation of cytochrome P450 catalytic cycle needs an electron donor (NADPH, NADH cofactor) in nature or alternative artificial electron donors such as electrodes, peroxides, photo reduction, and construction of enzymatic “galvanic couple”. In our review paper, we described alternative “handmade” electron sources to support cytochrome P450 catalysis. Physical-chemical methods in relation to biomolecules are possible to convert from laboratory to industry and construct P450-bioreactors for practical application. We analyzed electrochemical reactions using modified electrodes as electron donors. Electrode/P450 systems are the most analyzed in terms of the mechanisms underlying P450-catalyzed reactions. Comparative analysis of flat 2D and nanopore 3D electrode modifiers is discussed. Solar-powered photobiocatalysis for CYP systems with photocurrents providing electrons to heme iron of CYP and photoelectrochemical biosensors are also promising alternative light-driven systems. Several examples of artificial “galvanic element” construction using Zn as an electron source for the reduction of Fe3+ ion of heme demonstrated potential application. The characteristics, performance, and potential applications of P450 electrochemical systems are also discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Garcia-Borràs, Marc. "Photobiocatalysts tame nitrogen-centred radicals". Nature Catalysis 6, n.º 8 (23 de agosto de 2023): 654–56. http://dx.doi.org/10.1038/s41929-023-01004-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Cheng, Feng, Heng Li, Dong-Yang Wu, Ju-Mou Li, Yi Fan, Ya-Ping Xue e Yu-Guo Zheng. "Light-driven deracemization of phosphinothricin by engineered fatty acid photodecarboxylase on a gram scale". Green Chemistry 22, n.º 20 (2020): 6815–18. http://dx.doi.org/10.1039/d0gc02696d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Churakova, Ekaterina, Martin Kluge, René Ullrich, Isabel Arends, Martin Hofrichter e Frank Hollmann. "Specific Photobiocatalytic Oxyfunctionalization Reactions". Angewandte Chemie International Edition 50, n.º 45 (16 de setembro de 2011): 10716–19. http://dx.doi.org/10.1002/anie.201105308.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Churakova, Ekaterina, Martin Kluge, René Ullrich, Isabel Arends, Martin Hofrichter e Frank Hollmann. "Specific Photobiocatalytic Oxyfunctionalization Reactions". Angewandte Chemie 123, n.º 45 (16 de setembro de 2011): 10904–7. http://dx.doi.org/10.1002/ange.201105308.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Le, Thien-Kim, Jong Hyun Park, Da Som Choi, Ga-Young Lee, Woo Sung Choi, Ki Jun Jeong, Chan Beum Park e Chul-Ho Yun. "Solar-driven biocatalytic C-hydroxylation through direct transfer of photoinduced electrons". Green Chemistry 21, n.º 3 (2019): 515–25. http://dx.doi.org/10.1039/c8gc02398k.

Texto completo da fonte
Resumo:
Photoactivation of flavins is coupled productively with the direct transfer of photoinduced electrons to P450s to achieve photobiocatalytic C-hydroxylation reactions in the absence of nicotinamide cofactors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kim, Jinhyun, Yang Woo Lee, Eun-Gyu Choi, Passarut Boonmongkolras, Byoung Wook Jeon, Hojin Lee, Seung Tae Kim et al. "Robust FeOOH/BiVO4/Cu(In, Ga)Se2 tandem structure for solar-powered biocatalytic CO2 reduction". Journal of Materials Chemistry A 8, n.º 17 (2020): 8496–502. http://dx.doi.org/10.1039/d0ta02069a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Zachos, Ioannis, Sarah Katharina Gaßmeyer, Daniel Bauer, Volker Sieber, Frank Hollmann e Robert Kourist. "Photobiocatalytic decarboxylation for olefin synthesis". Chemical Communications 51, n.º 10 (2015): 1918–21. http://dx.doi.org/10.1039/c4cc07276f.

Texto completo da fonte
Resumo:
The oxidative decarboxylation of fatty acids to terminal alkenes was accomplished with high selectivity by combining a fatty acid decarboxylase OleTJE with the light-catalyzed generation of the cosubstrate hydrogen peroxide, resulting in a simple and efficient system for the light-driven cleavage of C–C bonds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Singh, Praveen P., Surabhi Sinha, Pankaj Nainwal, Pravin K. Singh e Vishal Srivastava. "Novel applications of photobiocatalysts in chemical transformations". RSC Advances 14, n.º 4 (2024): 2590–601. http://dx.doi.org/10.1039/d3ra07371h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Hobisch, Markus, Morten Martinus Cornelis Harald Schie, Jinhyun Kim, Kasper Røjkjær Andersen, Miguel Alcalde, Robert Kourist, Chan Beum Park, Frank Hollmann e Selin Kara. "Solvent‐Free Photobiocatalytic Hydroxylation of Cyclohexane". ChemCatChem 12, n.º 16 (12 de junho de 2020): 4009–13. http://dx.doi.org/10.1002/cctc.202000512.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Yamanaka, Rio, Kaoru Nakamura, Masahiko Murakami e Akio Murakami. "Selective synthesis of cinnamyl alcohol by cyanobacterial photobiocatalysts". Tetrahedron Letters 56, n.º 9 (fevereiro de 2015): 1089–91. http://dx.doi.org/10.1016/j.tetlet.2015.01.092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Nadtochenko, Victor, Vitaliy Nikandrov, Yanina Borisova, Galina Nizova, Arseny Aybush, Andrei Kostrov, Igor Shagadeev et al. "TiO2 Supported Photobiocatalytic Systems". Recent Patents on Catalysis 2, n.º 2 (31 de maio de 2014): 91–100. http://dx.doi.org/10.2174/2211548x03666140129000100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Rauch, M., S. Schmidt, I. W. C. E. Arends, K. Oppelt, S. Kara e F. Hollmann. "Photobiocatalytic alcohol oxidation using LED light sources". Green Chemistry 19, n.º 2 (2017): 376–79. http://dx.doi.org/10.1039/c6gc02008a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Yoon, Jaekyung, e Hyunku Joo. "Photobiocatalytic hydrogen production in a photoelectrochemical cell". Korean Journal of Chemical Engineering 24, n.º 5 (setembro de 2007): 742–48. http://dx.doi.org/10.1007/s11814-007-0036-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Seel, Catharina Julia, Antonín Králík, Melanie Hacker, Annika Frank, Burkhard König e Tanja Gulder. "Atom-Economic Electron Donors for Photobiocatalytic Halogenations". ChemCatChem 10, n.º 18 (25 de julho de 2018): 3960–63. http://dx.doi.org/10.1002/cctc.201800886.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Wang, Tian-Ci, Binh Khanh Mai, Zheng Zhang, Zhiyu Bo, Jiedong Li, Peng Liu e Yang Yang. "Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling". Nature 629, n.º 8010 (1 de maio de 2024): 98–104. http://dx.doi.org/10.1038/s41586-024-07284-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Li, Yuanying, Bo Yuan, Zhoutong Sun e Wuyuan Zhang. "C–H bond functionalization reactions enabled by photobiocatalytic cascades". Green Synthesis and Catalysis 2, n.º 3 (agosto de 2021): 267–74. http://dx.doi.org/10.1016/j.gresc.2021.06.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Krasnovsky, A. A., e V. V. Nikandrov. "The photobiocatalytic system: Inorganic semiconductors coupled to bacterial cells". FEBS Letters 219, n.º 1 (13 de julho de 1987): 93–96. http://dx.doi.org/10.1016/0014-5793(87)81197-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong e Ning Li. "Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations". ChemSusChem 14, n.º 7 (16 de fevereiro de 2021): 1687–91. http://dx.doi.org/10.1002/cssc.202100184.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong e Ning Li. "Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations". ChemSusChem 14, n.º 7 (25 de março de 2021): 1615. http://dx.doi.org/10.1002/cssc.202100471.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kosem, Nuttavut, Yuki Honda, Motonori Watanabe, Atsushi Takagaki, Zahra Pourmand Tehrani, Fatima Haydous, Thomas Lippert e Tatsumi Ishihara. "Photobiocatalytic H2 evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant Escherichia coli". Catalysis Science & Technology 10, n.º 12 (2020): 4042–52. http://dx.doi.org/10.1039/d0cy00128g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Hobisch, Markus, Morten Martinus Cornelis Harald Schie, Jinhyun Kim, Kasper Røjkjær Andersen, Miguel Alcalde, Robert Kourist, Chan Beum Park, Frank Hollmann e Selin Kara. "Front Cover: Solvent‐Free Photobiocatalytic Hydroxylation of Cyclohexane (ChemCatChem 16/2020)". ChemCatChem 12, n.º 16 (20 de agosto de 2020): 3956. http://dx.doi.org/10.1002/cctc.202001192.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Duong, Hong T., Yinqi Wu, Alexander Sutor, Bastien O. Burek, Frank Hollmann e Jonathan Z. Bloh. "Intensification of Photobiocatalytic Decarboxylation of Fatty Acids for the Production of Biodiesel". ChemSusChem 14, n.º 4 (2 de fevereiro de 2021): 1053–56. http://dx.doi.org/10.1002/cssc.202002957.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Wang, Yajie, Xiaoqiang Huang, Jingshu Hui, Lam Tung Vo e Huimin Zhao. "Stereoconvergent Reduction of Activated Alkenes by a Nicotinamide Free Synergistic Photobiocatalytic System". ACS Catalysis 10, n.º 16 (24 de julho de 2020): 9431–37. http://dx.doi.org/10.1021/acscatal.0c02489.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Gurunathan, K. "Photobiocatalytic production of hydrogen using sensitized TiO2–MV2+ system coupled Rhodopseudomonas capsulata". Journal of Molecular Catalysis A: Chemical 156, n.º 1-2 (maio de 2000): 59–67. http://dx.doi.org/10.1016/s1381-1169(99)00417-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Długosz, Olga, e Marcin Banach. "Sunlight photobiocatalytic performance of LDH-Me2O nanocomposites synthesised in deep eutectic solvent (DES)". Solid State Sciences 149 (março de 2024): 107456. http://dx.doi.org/10.1016/j.solidstatesciences.2024.107456.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Dhanabalan, K., e K. Gurunathan. "Photobiocatalytic Hydrogen Production by Using Cyanobacteria Coupled with Nanoparticles of CdS and CdS/ZnS". Advanced Science, Engineering and Medicine 7, n.º 8 (1 de agosto de 2015): 667–71. http://dx.doi.org/10.1166/asem.2015.1749.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong e Ning Li. "Front Cover: Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations (7/2021)". ChemSusChem 14, n.º 7 (31 de março de 2021): 1612. http://dx.doi.org/10.1002/cssc.202100472.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Reeve, Holly A., Philip A. Ash, HyunSeo Park, Ailun Huang, Michalis Posidias, Chloe Tomlinson, Oliver Lenz e Kylie A. Vincent. "Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology". Biochemical Journal 474, n.º 2 (6 de janeiro de 2017): 215–30. http://dx.doi.org/10.1042/bcj20160513.

Texto completo da fonte
Resumo:
The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry. We focus on reactions involving the H+/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Lan, Fang, Qin Wang, Hui Chen, Yi Chen, Yuanyuan Zhang, Bowen Huang, Hongbo Liu, Jian Liu e Run Li. "Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction". ACS Catalysis 10, n.º 21 (22 de outubro de 2020): 12976–86. http://dx.doi.org/10.1021/acscatal.0c03652.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Tanaka, Shusei, Hideo Kojima, Satomi Takeda, Rio Yamanaka e Tetsuo Takemura. "Asymmetric visible-light photobiocatalytic reduction of β-keto esters utilizing the cofactor recycling system in Synechocystis sp. PCC 6803". Tetrahedron Letters 61, n.º 24 (junho de 2020): 151973. http://dx.doi.org/10.1016/j.tetlet.2020.151973.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Erdem, Elif, Lenny Malihan-Yap, Leen Assil-Companioni, Hanna Grimm, Giovanni Davide Barone, Carole Serveau-Avesque, Agnes Amouric et al. "Photobiocatalytic Oxyfunctionalization with High Reaction Rate using a Baeyer–Villiger Monooxygenase from Burkholderia xenovorans in Metabolically Engineered Cyanobacteria". ACS Catalysis 12, n.º 1 (10 de dezembro de 2021): 66–72. http://dx.doi.org/10.1021/acscatal.1c04555.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Broumidis, Emmanouil, e Francesca Paradisi. "Engineering a Dual‐Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry". Angewandte Chemie International Edition, 20 de março de 2024. http://dx.doi.org/10.1002/anie.202401912.

Texto completo da fonte
Resumo:
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits such as integrated processes, reusability, easier product separation, and potential for scalability can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this work we employ a photosensitizer‐containing porous emulsion‐templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material which enables the bromination of four aromatic substrates, including Rutin – a natural occurring flavonol – under blue light (456 nm) irradiation and continuous flow conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Broumidis, Emmanouil, e Francesca Paradisi. "Engineering a Dual‐Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry". Angewandte Chemie, 20 de março de 2024. http://dx.doi.org/10.1002/ange.202401912.

Texto completo da fonte
Resumo:
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits such as integrated processes, reusability, easier product separation, and potential for scalability can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this work we employ a photosensitizer‐containing porous emulsion‐templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material which enables the bromination of four aromatic substrates, including Rutin – a natural occurring flavonol – under blue light (456 nm) irradiation and continuous flow conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Chanquia, Santiago Nahuel, Alessia Valotta, Heidrun Gruber-Woelfler e Selin Kara. "Photobiocatalysis in Continuous Flow". Frontiers in Catalysis 1 (10 de janeiro de 2022). http://dx.doi.org/10.3389/fctls.2021.816538.

Texto completo da fonte
Resumo:
In the last years, there were two fields that experienced an astonishing growth within the biocatalysis community: photobiocatalysis and applications of flow technology to catalytic processes. Therefore, it is not a surprise that the combination of these two research areas also gave place to several recent interesting articles. However, to the best of our knowledge, no review article covering these advances was published so far. Within this review, we present recent and very recent developments in the field of photobiocatalysis in continuous flow, we discuss several different practical applications and features of state-of-the art photobioreactors and lastly, we present some future perspectives in the field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Zhou, Jianle, Frank Hollmann, Qi He, Wen Chen, Yunjian Ma e Yonghua Wang. "Continuous Fatty Acid Decarboxylation using an Immobilized Photodecarboxylase in a Membrane Reactor". ChemSusChem, 20 de novembro de 2023. http://dx.doi.org/10.1002/cssc.202301326.

Texto completo da fonte
Resumo:
The realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well‐established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane‐associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavor resulted in creating an innovative assembled photoenzyme‐membrane ( protein load 5 mg cm‐2), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme‐membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6‐C18). Following this, the membrane‐flow mesoscale reactor attained a maximum space‐time yield of 1.2 mmol L‐1 h‐1 C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme‐membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Dodge, N., D. A. Russo, B. M. Blossom, R. K. Singh, B. van Oort, R. Croce, M. J. Bjerrum e P. E. Jensen. "Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase". Biotechnology for Biofuels 13, n.º 1 (30 de novembro de 2020). http://dx.doi.org/10.1186/s13068-020-01832-7.

Texto completo da fonte
Resumo:
Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP–Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. Results We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP–Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP–Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP–Chl a shows increased cellulose oxidation under low light conditions, and the WSCP–Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP–Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. Conclusion With WSCP–Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP–Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Wang, Jian-Peng, Min-Hua Zong e Ning Li. "Photobiocatalysis: A promising tool for sustainable synthesis". Chem Catalysis, fevereiro de 2024, 100933. http://dx.doi.org/10.1016/j.checat.2024.100933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia