Artigos de revistas sobre o tema "Phosphorylation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Phosphorylation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hizli, Asli A., Yong Chi, Jherek Swanger, John H. Carter, Yi Liao, Markus Welcker, Alexey G. Ryazanov e Bruce E. Clurman. "Phosphorylation of Eukaryotic Elongation Factor 2 (eEF2) by Cyclin A–Cyclin-Dependent Kinase 2 Regulates Its Inhibition by eEF2 Kinase". Molecular and Cellular Biology 33, n.º 3 (26 de novembro de 2012): 596–604. http://dx.doi.org/10.1128/mcb.01270-12.
Texto completo da fonteCoulonval, Katia, Hugues Kooken e Pierre P. Roger. "Coupling of T161 and T14 phosphorylations protects cyclin B–CDK1 from premature activation". Molecular Biology of the Cell 22, n.º 21 (novembro de 2011): 3971–85. http://dx.doi.org/10.1091/mbc.e11-02-0136.
Texto completo da fonteADAMS, Ryan A., Xinran LIU, David S. WILLIAMS e Alexandra C. NEWTON. "Differential spatial and temporal phosphorylation of the visual receptor, rhodopsin, at two primary phosphorylation sites in mice exposed to light". Biochemical Journal 374, n.º 2 (1 de setembro de 2003): 537–43. http://dx.doi.org/10.1042/bj20030408.
Texto completo da fonteVanoosthuyse, Vincent, e Kevin G. Hardwick. "The Complexity of Bub1 Regulation: Phosphorylation, Phosphorylation, Phosphorylation". Cell Cycle 2, n.º 2 (7 de março de 2003): 118–19. http://dx.doi.org/10.4161/cc.2.2.343.
Texto completo da fontePant, Harish C., e Veeranna. "Neurofilament phosphorylation". Biochemistry and Cell Biology 73, n.º 9-10 (1 de setembro de 1995): 575–92. http://dx.doi.org/10.1139/o95-063.
Texto completo da fonteBhattacharyya, Sumit, Alip Borthakur, Arivarasu N. Anbazhagan, Shivani Katyal, Pradeep K. Dudeja e Joanne K. Tobacman. "Specific effects of BCL10 Serine mutations on phosphorylations in canonical and noncanonical pathways of NF-κB activation following carrageenan". American Journal of Physiology-Gastrointestinal and Liver Physiology 301, n.º 3 (setembro de 2011): G475—G486. http://dx.doi.org/10.1152/ajpgi.00071.2011.
Texto completo da fonteCarty, DJ, DL Freas e AR Gear. "ADP causes subsecond changes in protein phosphorylation of platelets". Blood 70, n.º 2 (1 de agosto de 1987): 511–15. http://dx.doi.org/10.1182/blood.v70.2.511.511.
Texto completo da fonteCarty, DJ, DL Freas e AR Gear. "ADP causes subsecond changes in protein phosphorylation of platelets". Blood 70, n.º 2 (1 de agosto de 1987): 511–15. http://dx.doi.org/10.1182/blood.v70.2.511.bloodjournal702511.
Texto completo da fonteKabachnik, M. I., L. S. Zakharov, E. I. Goryunov e I. Yu Kudryavtsev. "Catalytic phosphorylation of polyfluoroalkanols. 11. ?-Polyfluoroalkylbenzyldichlorophosphates as phosphorylating agents in the catalytic phosphorylation of primary polyfluoroalkanols". Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 38, n.º 7 (julho de 1989): 1522–26. http://dx.doi.org/10.1007/bf00978451.
Texto completo da fonteLanglais, Paul, Zhengping Yi e Lawrence J. Mandarino. "The Identification of Raptor as a Substrate for p44/42 MAPK". Endocrinology 152, n.º 4 (15 de fevereiro de 2011): 1264–73. http://dx.doi.org/10.1210/en.2010-1271.
Texto completo da fonteViolin, Jonathan D., Jin Zhang, Roger Y. Tsien e Alexandra C. Newton. "A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C". Journal of Cell Biology 161, n.º 5 (2 de junho de 2003): 899–909. http://dx.doi.org/10.1083/jcb.200302125.
Texto completo da fonteVary, Thomas C., e Christopher J. Lynch. "Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation". American Journal of Physiology-Endocrinology and Metabolism 290, n.º 4 (abril de 2006): E631—E642. http://dx.doi.org/10.1152/ajpendo.00460.2005.
Texto completo da fonteNorling, L. L., e M. Landt. "Comparison of Ca2+-dependent phosphorylation in viable dispersed brain cells with calmodulin-dependent protein kinase activity in cell-free preparations of rat brain". Biochemical Journal 232, n.º 3 (15 de dezembro de 1985): 629–35. http://dx.doi.org/10.1042/bj2320629.
Texto completo da fonteDusi, S., M. Donini e F. Rossi. "Tyrosine phosphorylation and activation of NADPH oxidase in human neutrophils: a possible role for MAP kinases and for a 75 kDa protein". Biochemical Journal 304, n.º 1 (15 de novembro de 1994): 243–50. http://dx.doi.org/10.1042/bj3040243.
Texto completo da fonteKNEBEL, Axel, Claire E. HAYDON, Nick MORRICE e Philip COHEN. "Stress-induced regulation of eukaryotic elongation factor 2 kinase by SB 203580-sensitive and −insensitive pathways". Biochemical Journal 367, n.º 2 (15 de outubro de 2002): 525–32. http://dx.doi.org/10.1042/bj20020916.
Texto completo da fonteHarper, Mary-Ellen, e Martin D. Brand. "Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions". Canadian Journal of Physiology and Pharmacology 72, n.º 8 (1 de agosto de 1994): 899–908. http://dx.doi.org/10.1139/y94-127.
Texto completo da fonteCohen, M. E., G. W. Sharp e M. Donowitz. "Suggestion of a role for calmodulin and phosphorylation in regulation of rabbit ileal electrolyte transport: effects of promethazine". American Journal of Physiology-Gastrointestinal and Liver Physiology 251, n.º 5 (1 de novembro de 1986): G710—G717. http://dx.doi.org/10.1152/ajpgi.1986.251.5.g710.
Texto completo da fonteGeraghty, Kathryn M., Shuai Chen, Jean E. Harthill, Adel F. Ibrahim, Rachel Toth, Nick A. Morrice, Franck Vandermoere, Greg B. Moorhead, D. Grahame Hardie e Carol MacKintosh. "Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR". Biochemical Journal 407, n.º 2 (25 de setembro de 2007): 231–41. http://dx.doi.org/10.1042/bj20070649.
Texto completo da fonteSolomon, M. J., T. Lee e M. W. Kirschner. "Role of phosphorylation in p34cdc2 activation: identification of an activating kinase." Molecular Biology of the Cell 3, n.º 1 (janeiro de 1992): 13–27. http://dx.doi.org/10.1091/mbc.3.1.13.
Texto completo da fonteScheid, Michael P., Paola A. Marignani e James R. Woodgett. "Multiple Phosphoinositide 3-Kinase-Dependent Steps in Activation of Protein Kinase B". Molecular and Cellular Biology 22, n.º 17 (1 de setembro de 2002): 6247–60. http://dx.doi.org/10.1128/mcb.22.17.6247-6260.2002.
Texto completo da fonteBenes, Cyril, e Stephen P. Soltoff. "Modulation of PKCδ tyrosine phosphorylation and activity in salivary and PC-12 cells by Src kinases". American Journal of Physiology-Cell Physiology 280, n.º 6 (1 de junho de 2001): C1498—C1510. http://dx.doi.org/10.1152/ajpcell.2001.280.6.c1498.
Texto completo da fonteVendelbo, M. H., A. B. Møller, J. T. Treebak, L. C. Gormsen, L. J. Goodyear, J. F. P. Wojtaszewski, J. O. L. Jørgensen, N. Møller e N. Jessen. "Sustained AS160 and TBC1D1 phosphorylations in human skeletal muscle 30 min after a single bout of exercise". Journal of Applied Physiology 117, n.º 3 (1 de agosto de 2014): 289–96. http://dx.doi.org/10.1152/japplphysiol.00044.2014.
Texto completo da fonteGaplovska-Kysela, Katarina, e Andrea Sevcovicova. "Phosphorylation". Cell Cycle 12, n.º 5 (março de 2013): 716. http://dx.doi.org/10.4161/cc.23910.
Texto completo da fonteBABY, Y., M. TSUHAKO e N. YOZA. "ChemInform Abstract: Phosphorylation of Biomolecules with Inorganic Phosphorylating Agents." ChemInform 25, n.º 25 (19 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199425285.
Texto completo da fonteGreiwe, Julia F., Thomas C. R. Miller, Julia Locke, Fabrizio Martino, Steven Howell, Anne Schreiber, Andrea Nans, John F. X. Diffley e Alessandro Costa. "Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase". Nature Structural & Molecular Biology 29, n.º 1 (28 de dezembro de 2021): 10–20. http://dx.doi.org/10.1038/s41594-021-00698-z.
Texto completo da fonteAlmagor, Lior, Ivan S. Ufimtsev, Aruna Ayer, Jingzhi Li e William I. Weis. "Structural insights into the aPKC regulatory switch mechanism of the human cell polarity protein lethal giant larvae 2". Proceedings of the National Academy of Sciences 116, n.º 22 (14 de maio de 2019): 10804–12. http://dx.doi.org/10.1073/pnas.1821514116.
Texto completo da fonteHer, J. H., S. Lakhani, K. Zu, J. Vila, P. Dent, T. W. Sturgill e M. J. Weber. "Dual phosphorylation and autophosphorylation in mitogen-activated protein (MAP) kinase activation". Biochemical Journal 296, n.º 1 (15 de novembro de 1993): 25–31. http://dx.doi.org/10.1042/bj2960025.
Texto completo da fonteHamáková, Kateřina, David Potěšil, Ondřej Bernatik, Igor Červenka, Matěj Rádsetoulal, Vitězslav Bryja e Zbyněk Zdráhal. "Semiquantitative Assessment of Dishevelled-3 Phosphorylation Status by Mass Spectrometry". Hungarian Journal of Industry and Chemistry 46, n.º 1 (1 de julho de 2018): 3–6. http://dx.doi.org/10.1515/hjic-2018-0002.
Texto completo da fonteMaik-Rachline, Galia, Shmuel Shaltiel e Rony Seger. "Extracellular phosphorylation converts pigment epithelium–derived factor from a neurotrophic to an antiangiogenic factor". Blood 105, n.º 2 (15 de janeiro de 2005): 670–78. http://dx.doi.org/10.1182/blood-2004-04-1569.
Texto completo da fonteAmano, Mutsuki, Yoko Kanazawa, Kei Kozawa e Kozo Kaibuchi. "Identification of the Kinase-Substrate Recognition Interface between MYPT1 and Rho-Kinase". Biomolecules 12, n.º 2 (18 de janeiro de 2022): 159. http://dx.doi.org/10.3390/biom12020159.
Texto completo da fonteZheng, Yupeng, Sam John, James J. Pesavento, Jennifer R. Schultz-Norton, R. Louis Schiltz, Sonjoon Baek, Ann M. Nardulli, Gordon L. Hager, Neil L. Kelleher e Craig A. Mizzen. "Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II". Journal of Cell Biology 189, n.º 3 (3 de maio de 2010): 407–15. http://dx.doi.org/10.1083/jcb.201001148.
Texto completo da fonteThornton, Tina, e Mercedes Rincon. "The role of p38 MAPK/GSK3β signaling in T and B lymphocytes undergoing programmed DNA recombination (111.47)". Journal of Immunology 188, n.º 1_Supplement (1 de maio de 2012): 111.47. http://dx.doi.org/10.4049/jimmunol.188.supp.111.47.
Texto completo da fonteSoltys, Carrie-Lynn M., Suzanne Kovacic e Jason R. B. Dyck. "Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased Akt activity". American Journal of Physiology-Heart and Circulatory Physiology 290, n.º 6 (junho de 2006): H2472—H2479. http://dx.doi.org/10.1152/ajpheart.01206.2005.
Texto completo da fonteLakkireddy, Dr Suresh. "MOLECULAR ADVANCEMENTS IN PROTEIN PHOSPHORYLATION METHODOLOGIES: A RAPID REVIEW". Era's Journal of Medical Research 10, n.º 2 (dezembro de 2023): 35–38. http://dx.doi.org/10.24041/ejmr2023.33.
Texto completo da fonteAkiyama, T., T. Saito, H. Ogawara, K. Toyoshima e T. Yamamoto. "Tumor promoter and epidermal growth factor stimulate phosphorylation of the c-erbB-2 gene product in MKN-7 human adenocarcinoma cells". Molecular and Cellular Biology 8, n.º 3 (março de 1988): 1019–26. http://dx.doi.org/10.1128/mcb.8.3.1019-1026.1988.
Texto completo da fonteAkiyama, T., T. Saito, H. Ogawara, K. Toyoshima e T. Yamamoto. "Tumor promoter and epidermal growth factor stimulate phosphorylation of the c-erbB-2 gene product in MKN-7 human adenocarcinoma cells." Molecular and Cellular Biology 8, n.º 3 (março de 1988): 1019–26. http://dx.doi.org/10.1128/mcb.8.3.1019.
Texto completo da fonteAhn, Jae Suk, Andrea Musacchio, Marina Mapelli, Jake Ni, Leonard Scinto, Ross Stein, Kenneth S. Kosik e Li-An Yeh. "Development of an Assay to Screen for Inhibitors of Tau Phosphorylation by Cdk5". Journal of Biomolecular Screening 9, n.º 2 (março de 2004): 122–31. http://dx.doi.org/10.1177/1087057103260594.
Texto completo da fonteVilimek, Dino, e Vincent Duronio. "Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB". Biochemistry and Cell Biology 84, n.º 1 (1 de fevereiro de 2006): 20–29. http://dx.doi.org/10.1139/o05-154.
Texto completo da fonteOgura, Masato, Junko Yamaki, Miwako K. Homma e Yoshimi Homma. "Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components". Biochemical Journal 447, n.º 2 (26 de setembro de 2012): 281–89. http://dx.doi.org/10.1042/bj20120509.
Texto completo da fonteShimasaki, Kentaro, Keigo Kumagai, Shota Sakai, Toshiyuki Yamaji e Kentaro Hanada. "Hyperosmotic Stress Induces Phosphorylation of CERT and Enhances Its Tethering throughout the Endoplasmic Reticulum". International Journal of Molecular Sciences 23, n.º 7 (5 de abril de 2022): 4025. http://dx.doi.org/10.3390/ijms23074025.
Texto completo da fonteKurihara, Kinji, Nobuo Nakanishi, Marilyn L. Moore-Hoon e R. James Turner. "Phosphorylation of the salivary Na+-K+-2Cl− cotransporter". American Journal of Physiology-Cell Physiology 282, n.º 4 (1 de abril de 2002): C817—C823. http://dx.doi.org/10.1152/ajpcell.00352.2001.
Texto completo da fonteMatusiak, Magdalena, Nina Van Opdenbosch, Lieselotte Vande Walle, Jean-Claude Sirard, Thirumala-Devi Kanneganti e Mohamed Lamkanfi. "Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5". Proceedings of the National Academy of Sciences 112, n.º 5 (20 de janeiro de 2015): 1541–46. http://dx.doi.org/10.1073/pnas.1417945112.
Texto completo da fonteSong, Weimeng, Li Hu, Zhihui Ma, Lei Yang e Jianming Li. "Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development". International Journal of Molecular Sciences 23, n.º 12 (13 de junho de 2022): 6603. http://dx.doi.org/10.3390/ijms23126603.
Texto completo da fonteTinsley, John H., Elena E. Ustinova, Wenjuan Xu e Sarah Y. Yuan. "Src-dependent, neutrophil-mediated vascular hyperpermeability and β-catenin modification". American Journal of Physiology-Cell Physiology 283, n.º 6 (1 de dezembro de 2002): C1745—C1751. http://dx.doi.org/10.1152/ajpcell.00230.2002.
Texto completo da fonteHolt, K. H., B. G. Kasson e J. E. Pessin. "Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase." Molecular and Cellular Biology 16, n.º 2 (fevereiro de 1996): 577–83. http://dx.doi.org/10.1128/mcb.16.2.577.
Texto completo da fonteBishop, R., R. Martinez, M. J. Weber, P. J. Blackshear, S. Beatty, R. Lim e H. R. Herschman. "Protein phosphorylation in a tetradecanoyl phorbol acetate-nonproliferative variant of 3T3 cells". Molecular and Cellular Biology 5, n.º 9 (setembro de 1985): 2231–37. http://dx.doi.org/10.1128/mcb.5.9.2231-2237.1985.
Texto completo da fonteBishop, R., R. Martinez, M. J. Weber, P. J. Blackshear, S. Beatty, R. Lim e H. R. Herschman. "Protein phosphorylation in a tetradecanoyl phorbol acetate-nonproliferative variant of 3T3 cells." Molecular and Cellular Biology 5, n.º 9 (setembro de 1985): 2231–37. http://dx.doi.org/10.1128/mcb.5.9.2231.
Texto completo da fonteDrepper, Friedel, Jacek Biernat, Senthilvelrajan Kaniyappan, Helmut E. Meyer, Eva Maria Mandelkow, Bettina Warscheid e Eckhard Mandelkow. "A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications". Journal of Biological Chemistry 295, n.º 52 (26 de outubro de 2020): 18213–25. http://dx.doi.org/10.1074/jbc.ra120.015882.
Texto completo da fonteL'Allemain, G., J. H. Her, J. Wu, T. W. Sturgill e M. J. Weber. "Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase". Molecular and Cellular Biology 12, n.º 5 (maio de 1992): 2222–29. http://dx.doi.org/10.1128/mcb.12.5.2222-2229.1992.
Texto completo da fonteL'Allemain, G., J. H. Her, J. Wu, T. W. Sturgill e M. J. Weber. "Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase." Molecular and Cellular Biology 12, n.º 5 (maio de 1992): 2222–29. http://dx.doi.org/10.1128/mcb.12.5.2222.
Texto completo da fonte