Literatura científica selecionada sobre o tema "PhC nanolasers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "PhC nanolasers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "PhC nanolasers"
Butté, Raphaël, e Nicolas Grandjean. "III-nitride photonic cavities". Nanophotonics 9, n.º 3 (15 de janeiro de 2020): 569–98. http://dx.doi.org/10.1515/nanoph-2019-0442.
Texto completo da fonteLu, Tsan-Wen, Zhen-Yu Wang, Kuang-Ming Lin e Po-Tsung Lee. "Lasing Emission from Soft Photonic Crystals for Pressure and Position Sensing". Nanomaterials 13, n.º 22 (15 de novembro de 2023): 2956. http://dx.doi.org/10.3390/nano13222956.
Texto completo da fonteTeses / dissertações sobre o assunto "PhC nanolasers"
Monti, Federico. "Time sampling using four-wave mixing to measure the dynamics of semiconductor nanolasers". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP026.
Texto completo da fontePhC nanolasers are receiving more and more attention due to their unique capacity to manipulate and confine light at a very small scale. Their small footprint and low thresholds make them ideal candidates for realizing optical interconnects, thus addressing the increasing demands for data transmission speed and power consumption. Moreover, their singular geometry enables the control of their spontaneous emission properties. This reveals PhC nanolasers' uniqueness from a fundamental point of view, highlighting their potential to serve as candidates for novel research in light-matter interaction. Despite these advantages, a characterization of their emission and their dynamical properties is still missing, due to the current limitations of the detection capabilities at infrared wavelengths.In this thesis, I have developed a time gating detection technique based on FWM, to measure the ultra fast response of 1D nanolasers. By carefully studying the interplay between nonlinearities and dispersion, it was possible to reach a high sensitivity of a few photons and a resolution of 2 ps. Further improvements in sensitivity, down to less than a photon detection, is predicted by employing higher gate powers. This can open the way to study photon statistics and quantum effects deep in the quantum regime.The profiles of 1D nanolasers feature a very fast onset of the emission and a long decay, compatible with a β factor of 0.12 and a photon lifetime of 20 ps. A novel approach to obtaining the values of these two parameters controlling laser dynamics has been developed: they have been directly retrieved from the%The manner in which these two parameters controlling laser dynamics have been obtained constitutes a novel approach, as they have been directly retrieved from theultra-fast response of nanolasers, instead of solely relying on steady state measurements such as the S curve, which, in many cases, can lead to inaccurate estimations due to the interdependence of these parameters. The dynamical response of 1D nanolasers is compatible with a maximum modulation speed of around 30 GHz, fullfiling the requirement for low threshold ultra compact laser sources for photonic integrated circuits and optical communications.The high sensitivity and resolution of the technique allowed us to measure for the first time, to the best of our knowledge, an adiabatic wavelength conversion of photons with a wavelength shift as large as 1.2 nm. This shows the potential of the technique in studying ultra fast dynamics at NIR wavelengths
Trabalhos de conferências sobre o assunto "PhC nanolasers"
Tsurugaya, Takuma, Koji Takeda, Takuro Fujii, Toru Segawa e Shinji Matsuo. "40-Gbps Direct Modulation of Electrically Driven 1D Photonic-Crystal Nanolaser on SiO2/Si". In CLEO: Science and Innovations, SW3H.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sw3h.6.
Texto completo da fonteDelmulle, M., B. Garbin, L. M. Massaro, A. Bazin, I. Sagnes, K. Pantzas, S. Combrié, A. De Rossi e F. Raineri. "Excitability in a PhC Nanolaser with an Integrated Saturable Absorber". In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10231939.
Texto completo da fonteBian, Yusheng, Zheng Zheng, Jiansheng Liu, Jinsong Zhu e Tao Zhou. "Low-threshold plasmonic nanolaser structure based on coupled nanowires". In 2011 IEEE Photonics Conference (IPC). IEEE, 2011. http://dx.doi.org/10.1109/pho.2011.6110432.
Texto completo da fonte