Artigos de revistas sobre o tema "Phase transformation interfaces"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Phase transformation interfaces".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Farahani, Hussein, Gerrit Zijlstra, Maria Giuseppina Mecozzi, Václav Ocelík, Jeff Th M. De Hosson e Sybrand van der Zwaag. "In Situ High-Temperature EBSD and 3D Phase Field Studies of the Austenite–Ferrite Transformation in a Medium Mn Steel". Microscopy and Microanalysis 25, n.º 3 (12 de abril de 2019): 639–55. http://dx.doi.org/10.1017/s143192761900031x.
Texto completo da fonteFischer, F. D., N. K. Simha e J. Svoboda. "Kinetics of Diffusional Phase Transformation in Multicomponent Elastic-Plastic Materials". Journal of Engineering Materials and Technology 125, n.º 3 (1 de julho de 2003): 266–76. http://dx.doi.org/10.1115/1.1586939.
Texto completo da fonteFang, Hui, Qianyu Tang, Qingyu Zhang, Yiming Fan, Shiyan Pan, Markus Rettenmayr e Mingfang Zhu. "Simulation of the Peritectic Phase Transition in Fe-C Alloys". Materials 15, n.º 2 (11 de janeiro de 2022): 537. http://dx.doi.org/10.3390/ma15020537.
Texto completo da fonteZhang, Hongliang, Jianqi Xi, Ranran Su, Xuanxin Hu, Jun Young Kim, Shuguang Wei, Chenyu Zhang, Liqun Shi e Izabela Szlufarska. "Enhancing the phase stability of ceramics under radiation via multilayer engineering". Science Advances 7, n.º 26 (junho de 2021): eabg7678. http://dx.doi.org/10.1126/sciadv.abg7678.
Texto completo da fonteWeatherly, G. C. "Interfaces and precipitation". Proceedings, annual meeting, Electron Microscopy Society of America 50, n.º 1 (agosto de 1992): 224–25. http://dx.doi.org/10.1017/s0424820100121521.
Texto completo da fonteZhang, Hengzhong, e Jillian F. Banfield. "Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation". Journal of Materials Research 15, n.º 2 (fevereiro de 2000): 437–48. http://dx.doi.org/10.1557/jmr.2000.0067.
Texto completo da fonteZhang, Wen-Zheng. "Reproducible Orientation Relationships Developed from Phase Transformations—Role of Interfaces". Crystals 10, n.º 11 (16 de novembro de 2020): 1042. http://dx.doi.org/10.3390/cryst10111042.
Texto completo da fonteHowe, James M. "Atomic Structure, Composition, Mechanisms and Dynamics of Transformation Interfaces in Diffusional Phase Transformations". Materials Transactions, JIM 39, n.º 1 (1998): 3–23. http://dx.doi.org/10.2320/matertrans1989.39.3.
Texto completo da fonteRettenmayr, Markus, Oleg Kashin e Stephanie Lippmann. "Simulation of Liquid Film Migration during Melting". Materials Science Forum 790-791 (maio de 2014): 127–32. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.127.
Texto completo da fonteZhang, J. X., e H. Q. Ye. "Deformation-induced α2 ↔ γ phase transformation in a Ti–48Al–2Cr alloy". Journal of Materials Research 15, n.º 10 (outubro de 2000): 2145–50. http://dx.doi.org/10.1557/jmr.2000.0309.
Texto completo da fonteLiu, Binbin, Zhu Zhu, Caiyun Liu, Yao Wang e Feng Ye. "Effect of Inserted Ti Layers on the Phase Transformation of Al/Ni Multilayer Foils". Coatings 12, n.º 4 (26 de março de 2022): 453. http://dx.doi.org/10.3390/coatings12040453.
Texto completo da fonteFleck, Michael, Felix Schleifer e Patrick Zimbrod. "Frictionless Motion of Diffuse Interfaces by Sharp Phase-Field Modeling". Crystals 12, n.º 10 (21 de outubro de 2022): 1496. http://dx.doi.org/10.3390/cryst12101496.
Texto completo da fonteShen, X. P., B. N. Yao, Z. R. Liu, D. Legut, H. J. Zhang e R. F. Zhang. "Mechanistic insights into interface-facilitated dislocation nucleation and phase transformation at semicoherent bimetal interfaces". International Journal of Plasticity 146 (novembro de 2021): 103105. http://dx.doi.org/10.1016/j.ijplas.2021.103105.
Texto completo da fonteLi, Xianchao. "Secondary-phase Transformation of Duplex Stainless Steels during Industrial Manufacturing". Journal of Physics: Conference Series 2541, n.º 1 (1 de julho de 2023): 012030. http://dx.doi.org/10.1088/1742-6596/2541/1/012030.
Texto completo da fonteСпивак, Л. В., В. С. Кирчанов e Н. Е. Щепина. "Полиморфные превращения в йодидном титане". Физика твердого тела 64, n.º 11 (2022): 1820. http://dx.doi.org/10.21883/ftt.2022.11.53341.400.
Texto completo da fonteMorrissey, K. J. "Interface structures in polycrystalline ceramic materials". Proceedings, annual meeting, Electron Microscopy Society of America 44 (agosto de 1986): 468–71. http://dx.doi.org/10.1017/s0424820100143900.
Texto completo da fonteNigro, C. F., C. Bjerkén e Y. Mellbin. "Phase-field modelling: effect of an interface crack on precipitation kinetics in a multi-phase microstructure". International Journal of Fracture 227, n.º 2 (17 de janeiro de 2021): 219–41. http://dx.doi.org/10.1007/s10704-020-00510-x.
Texto completo da fonteJohn, P. K., A. C. Rastogi, B. Y. Tong, X. W. Wu e S. K. Wong. "Phase transformations at a nickel–silicon interface under transient annealing". Canadian Journal of Physics 65, n.º 8 (1 de agosto de 1987): 1037–43. http://dx.doi.org/10.1139/p87-170.
Texto completo da fonteLei, Ruo Shan, Shi Qing Xu, Ming Pu Wang, Ye Jun Li e Wei Hong Qi. "Size and Interface Coherency Dependent Phase Transformation of Niobium Nanoparticles Embedded in Copper Matrix by Mechanical Alloying". Advanced Materials Research 602-604 (dezembro de 2012): 243–48. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.243.
Texto completo da fonteSun, Jianguo. "3-D crosswell transmissions: Paraxial ray solutions and reciprocity paradox". GEOPHYSICS 60, n.º 3 (maio de 1995): 810–20. http://dx.doi.org/10.1190/1.1443819.
Texto completo da fonteGao, F., R. Devanathan, Y. Zhang, M. Posselt e W. J. Weber. "Atomic-level simulation of epitaxial recrystallization and phase transformation in SiC". Journal of Materials Research 21, n.º 6 (1 de junho de 2006): 1420–26. http://dx.doi.org/10.1557/jmr.2006.0176.
Texto completo da fonteAsada, Takashi, Hiroyuki Kato e Kazuaki Sasaki. "507 Phase-field model of transformation interfaces in stress-induced martensite". Proceedings of Conference of Hokkaido Branch 2010.49 (2010): 123–24. http://dx.doi.org/10.1299/jsmehokkaido.2010.49.123.
Texto completo da fontePerkins, Jeff, M. H. Wu e K. Adachi. "Interfaces and substructures in copper-based shape memory alloys". Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 786–87. http://dx.doi.org/10.1017/s0424820100105990.
Texto completo da fonteLei, Yimin, Jie Sun, Hongwei Liu, Xuan Cheng, Fuyi Chen e Zongwen Liu. "Predictable and controllable dual-phase interfaces in TiO2(B)/anatase nanofibers". Nanoscale 6, n.º 23 (2014): 14237–43. http://dx.doi.org/10.1039/c4nr04613g.
Texto completo da fonteGoetz, Morgan, Moukrane Dehmas, Benoît Appolaire, Elisabeth Aeby-Gautier, Sandra Andrieu e Thomas Billot. "Decomposition of the β phase at intermediate temperature in β-metastable Ti-5553 alloy". MATEC Web of Conferences 321 (2020): 12024. http://dx.doi.org/10.1051/matecconf/202032112024.
Texto completo da fonteKraus, S. "HREM Studies of Interfaces in Zr02/Al203 Ceramics". Proceedings, annual meeting, Electron Microscopy Society of America 43 (agosto de 1985): 218–19. http://dx.doi.org/10.1017/s0424820100118011.
Texto completo da fonteGu, Su Yi, e Ji Hua Zhang. "Antiferromagnetic Transition and Martensite Transformation in γ-Mn-Fe Alloys". Advanced Materials Research 146-147 (outubro de 2010): 916–19. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.916.
Texto completo da fonteLiu, Guo-Liang, Mei-Li Ding, Kun Zhang, Dan-Dan Qu, Yang Meng, Geng-Xing Luo e Shan-Wu Yang. "Microstructural and Interfacial Characterization of Ti–V Diffusion Bonding Zones". Metals 12, n.º 12 (26 de novembro de 2022): 2032. http://dx.doi.org/10.3390/met12122032.
Texto completo da fonteGalenko, P. K., I. G. Nizovtseva, K. Reuther e M. Rettenmayr. "Kinetic transition in the order–disorder transformation at a solid/liquid interface". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, n.º 2113 (8 de janeiro de 2018): 20170207. http://dx.doi.org/10.1098/rsta.2017.0207.
Texto completo da fonteCarter, C. Barry, e Lisa A. Tietz. "Interfaces in high-Tc superconducting oxides". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6 de agosto de 1989): 178–79. http://dx.doi.org/10.1017/s0424820100152860.
Texto completo da fonteШеляков, А. В., Н. Н. Ситников, И. А. Хабибуллина, Р. В. Сундеев e О. Н. Севрюков. "Особенности кристаллизации аморфных сплавов TiNiCu с высоким содержанием меди". Физика твердого тела 62, n.º 6 (2020): 829. http://dx.doi.org/10.21883/ftt.2020.06.49332.31m.
Texto completo da fonteМусабиров, И. И., И. М. Сафаров, Р. М. Галеев, Р. А. Гайсин, В. В. Коледов e Р. Р. Мулюков. "Анизотропия термического расширения поликристаллического сплава системы Ni-Mn-Ga, подвергнутого пластической деформации ковкой". Физика твердого тела 60, n.º 6 (2018): 1051. http://dx.doi.org/10.21883/ftt.2018.06.45975.28m.
Texto completo da fonteLee, Dong Nyung, e Heung Nam Han. "Directed Growth of Ferrite in Austenite and Kurdjumov-Sachs Orientation Relationship". Materials Science Forum 715-716 (abril de 2012): 128–33. http://dx.doi.org/10.4028/www.scientific.net/msf.715-716.128.
Texto completo da fonteWei, Zhao Zhao, Xiao Ma e Xin Ping Zhang. "Defect Structure and Martensitic Transformation Crystallography in Ni2MnGa Alloy". Materials Science Forum 687 (junho de 2011): 463–66. http://dx.doi.org/10.4028/www.scientific.net/msf.687.463.
Texto completo da fonteСиницын, В. В., О. Г. Рыбченко, В. Б. Ефимов e А. А. Вирюс. "Аморфный лед средней плотности, полученный разложением водно-гелиевого геля". Физика твердого тела 65, n.º 8 (2023): 1307. http://dx.doi.org/10.21883/ftt.2023.08.56147.103.
Texto completo da fonteGong, C. L., F. S. Han, Z. Li e M. P. Wang. "Internal friction related to viscous motion of phase interfaces during thermoelastic martensitic transformation". Philosophical Magazine 87, n.º 16 (junho de 2007): 2281–97. http://dx.doi.org/10.1080/14786430601156193.
Texto completo da fonteZhang, Hairui, Cong Wang, Junqing Guo, Wuhui Li, Chu Cheng, Nan Xiang, Tao Huang, Hongzhi Niu, Deliang Zhang e Fuxiao Chen. "Phase Transformation, Microstructural Evolution and Tensile Properties of a TiH2-Based Powder Metallurgy Pure Titanium". Metals 14, n.º 11 (25 de outubro de 2024): 1218. http://dx.doi.org/10.3390/met14111218.
Texto completo da fonteFeng, Lulu, Kaiming Wu, Feng Zhou e WeiWen Qiao. "Effect of Al on Pearlite Transformation and Spheroidization of High Carbon Steel". Science of Advanced Materials 13, n.º 6 (1 de junho de 2021): 1088–95. http://dx.doi.org/10.1166/sam.2021.4022.
Texto completo da fonteYanar, C., J. M. K. Wiezorek, V. Radmilovic e W. A. Soffa. "Characterization of Interphase Interfaces Developed During the Ordering Transformation (ε (A3) →τ (L10)) In Manganese-Aluminum Alloys". Microscopy and Microanalysis 6, S2 (agosto de 2000): 364–65. http://dx.doi.org/10.1017/s1431927600034310.
Texto completo da fonteChen, Qing, Anders Engström, Lars Höglund, Henrik Strandlund e Bo Sundman. "Thermo-Calc Program Interface and Their Applications - Direct Insertion of Thermodynamic and Kinetic Data into Modelling of Materials Processing, Structure and Property". Materials Science Forum 475-479 (janeiro de 2005): 3145–48. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.3145.
Texto completo da fonteSantofimia, M. J., John G. Speer, Lie Zhao e Jilt Sietsma. "Model for the Annealing of Partial Martensite-Austenite Microstructures in Steels". Solid State Phenomena 172-174 (junho de 2011): 567–72. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.567.
Texto completo da fonteРимский, Г. С., К. И. Янушкевич, Н. М. Белозорева, Д. П. Козленко e А. В. Руткаускас. "Кристаллическая структура и магнитные характеристики твердых растворов Mn-=SUB=-1-x-=/SUB=-Fe-=SUB=-x-=/SUB=-NiGe". Физика твердого тела 63, n.º 3 (2021): 393. http://dx.doi.org/10.21883/ftt.2021.03.50593.208.
Texto completo da fontePolatidis, Efthymios, Nikolay Zotov e Eric J. Mittemeijer. "Stress-induced phase transformations in thermally cycled superelastic NiTi alloys: in situ X-ray diffraction studies". Powder Diffraction 30, S1 (9 de março de 2015): S76—S82. http://dx.doi.org/10.1017/s0885715614001456.
Texto completo da fonteJohnson, Nathan S., Donald W. Brown, John S. Carpenter, Behnam Amin-Ahmadi, Craig A. Brice, Branden B. Kappes e Aaron P. Stebner. "The roles of kinematic constraint and diffusion in non-equilibrium solid state phase transformations of Ti-6Al-4V". Applied Physics Letters 120, n.º 17 (25 de abril de 2022): 171901. http://dx.doi.org/10.1063/5.0084229.
Texto completo da fonteJohnson, Nathan S., Donald W. Brown, John S. Carpenter, Behnam Amin-Ahmadi, Craig A. Brice, Branden B. Kappes e Aaron P. Stebner. "The roles of kinematic constraint and diffusion in non-equilibrium solid state phase transformations of Ti-6Al-4V". Applied Physics Letters 120, n.º 17 (25 de abril de 2022): 171901. http://dx.doi.org/10.1063/5.0084229.
Texto completo da fonteZheng, Yu, e Peng Xu. "Effect of Nb Content on Phase Transformation and Comprehensive Properties of TiNb Alloy Coating". Coatings 13, n.º 7 (1 de julho de 2023): 1186. http://dx.doi.org/10.3390/coatings13071186.
Texto completo da fonteSuvorova E. I., Solomkin F. Yu., Arkharova N. A., Sharenkova N. V. e Isachenko G. N. "Microstructure and phase composition of an alloy of iron and chrome disilicides". Semiconductors 56, n.º 2 (2022): 151. http://dx.doi.org/10.21883/sc.2022.02.53041.33.
Texto completo da fonteSuvorova, Elena I., Natalya A. Arkharova, Anna G. Ivanova, Fedor Yu Solomkin e Philippe A. Buffat. "Phases and Interfaces in the Cr–Fe–Si Ternary System: X-ray Diffraction and Electron Microscopy Study". Inorganics 11, n.º 2 (3 de fevereiro de 2023): 73. http://dx.doi.org/10.3390/inorganics11020073.
Texto completo da fonteЕгоров, В. М., П. Н. Якушев, М. А. Арсентьев e А. С. Смолянский. "Влияние гамма-облучения на фазовые переходы в политетрафторэтилене, допированном диоксидом кремния растительного происхождения". Физика твердого тела 62, n.º 8 (2020): 1339. http://dx.doi.org/10.21883/ftt.2020.08.49624.083.
Texto completo da fonteLong, Xiaoyan, Yu Zhang, Dongyun Sun, Dongxin Yin, Wei Liu, Zhen Zhang, Fucheng Zhang e Yanguo Li. "Study on the Influence of Pre-Formed Phase on Accelerating Bainitic Transformation". Coatings 13, n.º 10 (27 de setembro de 2023): 1700. http://dx.doi.org/10.3390/coatings13101700.
Texto completo da fonte