Literatura científica selecionada sobre o tema "Phase quantification"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Phase quantification".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Phase quantification"
Döbelin, Nicola. "Validation of XRD phase quantification using semi-synthetic data". Powder Diffraction 35, n.º 4 (13 de outubro de 2020): 262–75. http://dx.doi.org/10.1017/s0885715620000573.
Texto completo da fonteTakehara, L., M. A. Z. Vasconcellos, R. Hinrichs, J. B. M. da Cunha e F. Chemale Jr. "Phase quantification in iron ore". Mineral Processing and Extractive Metallurgy 118, n.º 3 (setembro de 2009): 168–74. http://dx.doi.org/10.1179/174328509x431445.
Texto completo da fonteHall, Caitrín, Ji Chul Kim e Alexandra Paxton. "Multidimensional recurrence quantification analysis of human-metronome phasing". PLOS ONE 18, n.º 2 (23 de fevereiro de 2023): e0279987. http://dx.doi.org/10.1371/journal.pone.0279987.
Texto completo da fonteHarnett, L., M. Stennett, E. Maddrell e N. Hyatt. "Characterisation of glass ceramic wasteforms using quantitative image analysis of electron micrographs". MRS Advances 7, n.º 5-6 (9 de fevereiro de 2022): 86–89. http://dx.doi.org/10.1557/s43580-022-00227-0.
Texto completo da fonteErgin, F. Gökhan. "Accuracy Improvement Quantification Using Phase-Separated PIV Measurements". Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (8 de julho de 2024): 1–7. http://dx.doi.org/10.55037/lxlaser.21st.4.
Texto completo da fonteSheiati, Shohreh, Hoang Nguyen, Paivo Kinnunen e Navid Ranjbar. "Cementitious phase quantification using deep learning". Cement and Concrete Research 172 (outubro de 2023): 107231. http://dx.doi.org/10.1016/j.cemconres.2023.107231.
Texto completo da fonteReddy, K. Chiranjeevi, e Kolluru V. L. Subramaniam. "Quantitative phase analysis of slag hydrating in an alkaline environment". Journal of Applied Crystallography 53, n.º 2 (13 de março de 2020): 424–34. http://dx.doi.org/10.1107/s1600576720001399.
Texto completo da fonteHagni, Ann M. "Phase identification, phase quantification, and phase association determinations utilizing automated mineralogy technology". JOM 60, n.º 4 (abril de 2008): 33–37. http://dx.doi.org/10.1007/s11837-008-0045-8.
Texto completo da fonteWininger, Michael, Alex Krasner, Nam Hun Kim e William Craelius. "Phase plane quantification of single-joint smoothness". Journal of Biomedical Engineering and Informatics 4, n.º 1 (15 de maio de 2018): 40. http://dx.doi.org/10.5430/jbei.v4n1p40.
Texto completo da fonteIlbagi, A., H. Henein e A. B. Phillion. "Phase quantification of impulse atomized Al68.5Ni31.5 alloy". Journal of Materials Science 46, n.º 19 (2 de novembro de 2010): 6235–42. http://dx.doi.org/10.1007/s10853-010-4972-8.
Texto completo da fonteTeses / dissertações sobre o assunto "Phase quantification"
Butler, Jonny. "Phase structure, phrase structure, and quantification". Thesis, University of York, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415175.
Texto completo da fonteGouverneur, Yves. "Phase de Berry et quantification de skyrmions". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/MQ33663.pdf.
Texto completo da fonteBeese, Allison M. "Quantification of phase transformation in stainless steel 301LN sheets". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44870.
Texto completo da fonteIncludes bibliographical references (p. 101-102).
This thesis investigates the large deformation behavior of stainless steel 301LN cold-rolled sheets which is largely governed by the initial anisotropy combined with the phase transformation during deformation. Stainless steel offers high strength with relatively high ductility as compared with other structural steels. The effect of initial anisotropy on the strength in different material directions is studied in order to predict forming and crash response of vehicle components. It is observed that loading in the material rolling direction results in increased strength in the cross direction, however loading in the material cross-rolling direction results in decreased strength in the rolling direction. The mechanism responsible for the above cross-hardening is complex and requires investigation of the microstructural evolution of the sheets. The austenitic stainless steel studied is comprised of only austenite when in bulk form. However, the process of cold-rolling the bulk material into sheets results in strain-induced martensitic phase transformation. Additional straining of the material leads to even more transformation of austenite to martensite. Because martensite is a harder phase than austenite, micromechanical arguments suggest that the amount of martensite has an effect on the plasticity and eventual fracture of this material. In this thesis, the martensitic evolution as a function of material direction and strain level is measured using three different techniques: X-ray diffraction, microscopy, and magnetic induction. The first two methods require interrupted tests, while using a Feritscope allows for in-situ measurement of the martensite content. However, the Feritscope must be calibrated by another measurement method.
(cont.) Observations of the measurements from each of the three methods confirm that the output of the Feritscope, Ferrite Number, is proportional to the martensite content. Therefore in-situ tests employing the Feritscope will allow for monitoring of the martensite content with evolution of stress and strain. From experiments described here, a directional dependence on martensite content is observed. The results from this study can be used to formulate an anisotropic martensite transformation kinetics law to describe the evolution of martensite content as a function of material anisotropy, stress state, and strain state.
by Allison M. Beese.
S.M.
Chatzimavroudis, George P. "Quantification of valvular regurgitation with magnetic resonance phase velocity mapping". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/11808.
Texto completo da fonteWallin, Ashley Kay. "Renal Arterial Blood Flow Quantification by Breath-held Phase-velocity Encoded MRI". Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4982.
Texto completo da fonteEngberg, Jonas. "Deep morphological quantification and clustering of brain cancer cells using phase-contrast imaging". Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454959.
Texto completo da fonteLin, Hung-Yu. "REAL-TIME FLOW QUANTIFICATION TECHNIQUES IN CARDIOVASCULAR MRI APPLICATIONS". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1238594589.
Texto completo da fonteMilet, Sylvain F. "Visualization and quantification of left heart blood flow by phase encoding magnetic resonance imaging". Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/16056.
Texto completo da fonteROTEM, RANY. "Development of Reliable Experimental Models for the Study of the Biological Behavior of Drug Nanocarriers". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241245.
Texto completo da fonteThe curative effectiveness of current and new drugs is often limited by poor pharmacokinetics in-vivo. The use of nanoparticles as drug carriers seems promising in solving this problem. In this work we aimed to further explore and improve common drug delivery components and techniques. Starting with the synthesis of nanoparticles with a controlled number of molecular recognition ligands, we used bulky ligands and gel separation to obtain nanoparticles with a discrete number of chemical functional groups, used later to conjugate the same number of molecular recognition ligands. These nanoparticles later showed substantial difference in the in-vivo behavior. A second project focused on the in-depth characterization of the relationship between hydrophobic inorganic nanoparticles and the polymer surfactants used to enable their water dispersibility, as well enabling their functionalization. This investigation was done through separate quantification of polymer and inorganic nanoparticles and assessment of stability. Our results showed that the removal of excess polymer from such systems can result in loss of colloidal stability. A third project was aimed to describe the mechanism of polymeric nanoparticle’s endosomal escape and provide a platform for qualitative investigation and enhancement of this process. This goal was accomplished through two complementary in-vitro experiments testing two proposed mechanisms of endosomal escape. These results raised a key consideration when matching a particle capable of endosomal escape to a specific cell type as well as methods reduce interaction with serum proteins. A fourth project focused on developing an assay to quantify cytosolic delivery of nanoparticles and theoretically assessed the possibility of using fluorescence resonance energy transfer (FRET) - which was found to be not practical in this case - as well as implementing a pro-fluorophore to generate a measurable signal. Our preliminary results indicate this method might indeed be useful for this purpose in the future.
Deroche, Annabelle. "Optimisation de la limite de quantification d'une méthode chromatographique en phase gazeuse couplée à une détection par capture d'électrons : développement et application au dosage d'un antiandrogène dans le plasma humain". Paris 5, 1997. http://www.theses.fr/1997PA05P224.
Texto completo da fonteLivros sobre o assunto "Phase quantification"
Khan, Zahid K. Phase I report: Ash quantification and characterization study. [Sacramento, CA] (1851 Heritage Lane, Sacramento, 95815): R.W. Beck and Associates, 1992.
Encontre o texto completo da fonteCurrens, James C. Characterization and quantification of nonpoint source pollution in a conduit-flow dominated karst aquifer underlying an extensive use agricultural region--phase III: Final report. [Lexington, Ky.]: Kentucky Geological Survey, University of Kentucky, 1999.
Encontre o texto completo da fonteGillespie, J. L. Installation Restoration Program: Phase II--confirmation/quantification stage 2 : final report for Wurtsmith Air Force Base, Michigan : hydrogeology near Wurtsmith Air Force Base, Michigan. Offut Air Force Base, Neb: USAF Environmental Quality Branch, Headquarters Strategic Air Command, 1991.
Encontre o texto completo da fonteGeological Survey (U.S.). Water Resources Division. e United States. Air Force. Environmental Quality Branch., eds. Installation Restoration Program: Phase II--confirmation/quantification stage 2 : final report for Wurtsmith Air Force Base, Michigan : hydrogeology near Wurtsmith Air Force Base, Michigan. Offut Air Force Base, Neb: USAF Environmental Quality Branch, Headquarters Strategic Air Command, 1991.
Encontre o texto completo da fonteKadmon, Nirit. On unique and non-unique reference and asymmetric quantification. [Amherst, Mass: Dept of Linguistics, University of Massachusetts], 1987.
Encontre o texto completo da fonteKadmon, Nirit. On unique and non-unique reference and asymmetric quantification. New York: Garland Pub., 1992.
Encontre o texto completo da fonteRösler, Kai M., e Michel R. Magistris. The size of motor-evoked potentials: influencing parameters and quantification. Editado por Charles M. Epstein, Eric M. Wassermann e Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0009.
Texto completo da fonteWendling, Fabrice, Marco Congendo e Fernando H. Lopes da Silva. EEG Analysis. Editado por Donald L. Schomer e Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0044.
Texto completo da fontePitt, Matthew. Motor unit anatomy and physiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754596.003.0006.
Texto completo da fonteCapítulos de livros sobre o assunto "Phase quantification"
Hayward-Lester, A., B. S. Chilton, P. A. Underhill, P. J. Oefner e P. A. Doris. "Quantification of Specific Nucleic Acids, Regulated RNA Processing, and Genomic Polymorphisms Using Reversed-Phase HPLC". In Gene Quantification, 45–78. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4164-5_4.
Texto completo da fonteWei, Ya, Siming Liang e Weikang Kong. "Phase Quantification by Different Techniques". In Mechanical Properties of Cementitious Materials at Microscale, 91–144. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6883-9_4.
Texto completo da fonteJung, Bernd, e Michael Markl. "Phase-Contrast MRI and Flow Quantification". In Magnetic Resonance Angiography, 51–64. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_3.
Texto completo da fonteHamilton, Robert G. "Antigen Quantification: Measurement of Multivalent Antigens by Solid-Phase Immunoassay". In Immunochemistry of Solid-Phase Immunoassay, 139–50. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9780367812775-9.
Texto completo da fonteSeuntjens, J. M., F. Y. Clark, T. J. Headley, A. C. Kilgo e N. Y. C. Yang. "Quantification of Second Phase Morphology in SSCL VQP Samples". In Advances in Cryogenic Engineering Materials, 793–98. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9053-5_101.
Texto completo da fonteBrown, Andrew M., e Jennifer L. DeLessio. "Test-Analysis Modal Correlation of Rocket Engine Structures in Liquid Hydrogen – Phase II". In Model Validation and Uncertainty Quantification, Volume 3, 413–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47638-0_46.
Texto completo da fontePlatz, Roland, e Benedict Götz. "Non-probabilistic Uncertainty Evaluation in the Concept Phase for Airplane Landing Gear Design". In Model Validation and Uncertainty Quantification, Volume 3, 161–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54858-6_17.
Texto completo da fonteLi, Qi, Gaohui Wang, Aral Sarrafi, Zhu Mao e Wenbo Lu. "Feasibility of Applying Phase-Based Video Processing for Modal Identification of Concrete Gravity Dams". In Model Validation and Uncertainty Quantification, Volume 3, 137–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74793-4_18.
Texto completo da fonteCanul-Polanco, J. A., e O. M. Jensen. "Variation in Phase Quantification of White Portland Cement by XRD". In Concrete Durability and Service Life Planning, 8–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43332-1_2.
Texto completo da fonteBurhenne, Heike, e Volkhard Kaever. "Quantification of Cyclic Dinucleotides by Reversed-Phase LC-MS/MS". In Cyclic Nucleotide Signaling in Plants, 27–37. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-441-8_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Phase quantification"
Sjödahl, Mikael, e Joel Wahl. "Bi-directional digital holographic imaging for the quantification of the scattering phase function of natural snow". In Digital Holography and Three-Dimensional Imaging, Tu5A.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.tu5a.5.
Texto completo da fonteJudson, Robert, Miroslav Hejna, Aparna Jorapur, Jun S. Song e Yuntian Zhang. "Quantification of mammalian tumor cell state plasticity with digital holographic cytometry". In Quantitative Phase Imaging IV, editado por Gabriel Popescu e YongKeun Park. SPIE, 2018. http://dx.doi.org/10.1117/12.2290462.
Texto completo da fonteLee, Ariel J., Mahn Jae Lee, Hye-Jin Kim, WeiSun Park e YongKeun Park. "Label-free quantification of oxidative stress on HS68 cells using optical diffraction tomography". In Quantitative Phase Imaging VII, editado por Gabriel Popescu, YongKeun Park e Yang Liu. SPIE, 2021. http://dx.doi.org/10.1117/12.2584888.
Texto completo da fonteYoon, Jonghee, Su-a. Yang, Kyoohyun Kim e YongKeun Park. "Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation)". In Quantitative Phase Imaging II, editado por Gabriel Popescu e YongKeun Park. SPIE, 2016. http://dx.doi.org/10.1117/12.2213780.
Texto completo da fonteNiu, Mengxuan, e Renjie Zhou. "Compact and simultaneous three-wavelength quantitative phase microscopy for hemoglobin concentration quantification in red blood cells". In Quantitative Phase Imaging VIII, editado por Gabriel Popescu, YongKeun Park e Yang Liu. SPIE, 2022. http://dx.doi.org/10.1117/12.2610467.
Texto completo da fonteCho, Hyewon, Nurbolat Aimakov, Inwoo Park, Myeonghoon Choi, Yerim Kim, Geosong Na, Sunghoon Lim e Woonggyu Jung. "Glomerulus quantification with deep learning based on novel multi-modal label-free quantitative phase imaging from a near-infrared (Conference Presentation)". In Quantitative Phase Imaging IX, editado por YongKeun Park e Yang Liu. SPIE, 2023. http://dx.doi.org/10.1117/12.2651095.
Texto completo da fonteBennetzen, Martin Vad, Theis Ivan Solling e Xiomara Marquez. "Towards Four Phase Autosegmentation and Microporosity Quantification". In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/171721-ms.
Texto completo da fonteLangley, J., e Qun Zhao. "Quantification of SPIO nanoparticles using phase gradient mapping". In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333758.
Texto completo da fonteOates, William S., e Justin Collins. "Uncertainty quantification in quantum informed ferroelectric phase field modeling". In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, editado por Nakhiah C. Goulbourne. SPIE, 2015. http://dx.doi.org/10.1117/12.2084413.
Texto completo da fonteManapuram, Ravi Kiran, Venugopal Reddy Manne, Narendran Sudheendran, Esteban F. Carbajal e Kirill V. Larin. "Quantification of microbubbles in blood with phase-sensitive SSOCT". In BiOS, editado por Valery V. Tuchin, Donald D. Duncan e Kirill V. Larin. SPIE, 2010. http://dx.doi.org/10.1117/12.842295.
Texto completo da fonteRelatórios de organizações sobre o assunto "Phase quantification"
Nadiga, Balasubramanya T., e Emilio Baglietto. Uncertainty Quantification of Multi-Phase Closures. Office of Scientific and Technical Information (OSTI), outubro de 2017. http://dx.doi.org/10.2172/1406195.
Texto completo da fonteDibert, Ana, e Daniel Rehn. Yttrium solid phase equation of state with uncertainty quantification. Office of Scientific and Technical Information (OSTI), setembro de 2024. http://dx.doi.org/10.2172/2440689.
Texto completo da fonteMcQuerry, Meredith, e Reannan Riedy. Development of a Phase Change Material (PCM) Measurement Methodology for Fabric Surface Quantification. Ames (Iowa): Iowa State University. Library, janeiro de 2019. http://dx.doi.org/10.31274/itaa.8293.
Texto completo da fonteHerman, Brook, Todd Swannack, Nathan Richards, Nancy Gleason e Safra Altman. Development of a General Anadromous Fish Habitat Model : phase 2 : initial model quantification. Engineer Research and Development Center (U.S.), setembro de 2020. http://dx.doi.org/10.21079/11681/38249.
Texto completo da fonteWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program, Phase II - Confirmation/Quantification Stage 1 for Travis Air Force Base, California. Fort Belvoir, VA: Defense Technical Information Center, abril de 1986. http://dx.doi.org/10.21236/ada168077.
Texto completo da fonteWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 2. Volume 3. Luke Air Force Base, Arizona. Fort Belvoir, VA: Defense Technical Information Center, junho de 1988. http://dx.doi.org/10.21236/ada199228.
Texto completo da fonteWESTON (ROY F) INC WEST CHESTER PA. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 2. Volume 4. Luke Air Force Base, Arizona. Fort Belvoir, VA: Defense Technical Information Center, junho de 1988. http://dx.doi.org/10.21236/ada199229.
Texto completo da fonteBrusseau, Mark L., Mart Oostrom e Mark White. Partitioning Tracers for In Situ Detection and Quantification of Dense Nonaqueous Phase Liquids in Groundwater Systems. Office of Scientific and Technical Information (OSTI), junho de 1999. http://dx.doi.org/10.2172/827261.
Texto completo da fonteAlexander, W. J., S. L. Winters e S. A. Guthrie. Installation Restoration Program. Phase 2. Confirmation/Quantification, Stage 2 for Seymour Johnson Air Force Base, North Carolina. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1988. http://dx.doi.org/10.21236/ada203412.
Texto completo da fonteAlexander, W. J., S. L. Winters e S. A. Guthrie. Installation Restoration Program. Phase 2. Confirmation/Quantification, Stage 2 for Seymour Johnson Air Force Base, North Carolina. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1988. http://dx.doi.org/10.21236/ada203413.
Texto completo da fonte