Artigos de revistas sobre o tema "Phantom material"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Phantom material".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yin, Jun, Manqi Li, Guangli Dai, Hongzhao Zhou, Liang Ma e Yixiong Zheng. "3D Printed Multi-material Medical Phantoms for Needle-tissue Interaction Modelling of Heterogeneous Structures". Journal of Bionic Engineering 18, n.º 2 (março de 2021): 346–60. http://dx.doi.org/10.1007/s42235-021-0031-1.
Texto completo da fonteZou, Jing, Xiaodong Hu, Hanyu Lv e Xiaotang Hu. "An Investigation of Calibration Phantoms for CT Scanners with Tube Voltage Modulation". International Journal of Biomedical Imaging 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/563571.
Texto completo da fonteManson, Eric Naab, Abdul Nashirudeen Mumuni, Issahaku Shirazu, Francis Hasford, Stephen Inkoom, Edem Sosu, Mark Pokoo Aikins e Gedel Ahmed Mohammed. "Development of a standard phantom for diffusion-weighted magnetic resonance imaging quality control studies: A review". Polish Journal of Medical Physics and Engineering 28, n.º 4 (1 de setembro de 2022): 169–79. http://dx.doi.org/10.2478/pjmpe-2022-0020.
Texto completo da fonteSofyan, Muhammad, Alpha Olivia Hidayati e Anita Nur Mayani. "Pembuatan Phantom dari Gips Sebagai Pengganti Tulang Manusia dan Bahan Akrilik Sebagai Pengganti Soft Tissue". Journal of Health 4, n.º 2 (31 de julho de 2017): 107. http://dx.doi.org/10.30590/vol4-no2-p107-113.
Texto completo da fonteEngers, Marius, Kent W. Stewart, Jan Liu e Peter P. Pott. "Development of a realistic venepuncture phantom". Current Directions in Biomedical Engineering 6, n.º 3 (1 de setembro de 2020): 402–5. http://dx.doi.org/10.1515/cdbme-2020-3104.
Texto completo da fonteKariyawasam, Lakna N., Curtise K. C. Ng, Zhonghua Sun e Catherine S. Kealley. "Use of Three-Dimensional Printing in Modelling an Anatomical Structure with a High Computed Tomography Attenuation Value: A Feasibility Study". Journal of Medical Imaging and Health Informatics 11, n.º 8 (1 de agosto de 2021): 2149–54. http://dx.doi.org/10.1166/jmihi.2021.3664.
Texto completo da fonteRahman, M. A., Md Tofajjol Hoseen Bhuiyan, M. M. Rahman e M. N. Chowdhury. "Comparative Study of Absorbed Doses in Different Phantom Materials and Fabrication of a Suitable Phantom". Malaysian Journal of Medical and Biological Research 5, n.º 1 (30 de junho de 2018): 19–24. http://dx.doi.org/10.18034/mjmbr.v5i1.444.
Texto completo da fonteMufida, Widya, Asih Puji Utami e Sofie Nornalita Dewi. "PEMBUATAN PHANTOM RADIOLOGI BERBAHAN DASAR KAYU LOKAL SEBAGAI PENGGANTI TULANG MANUSIA". Jurnal Imejing Diagnostik (JImeD) 6, n.º 1 (5 de fevereiro de 2020): 7–10. http://dx.doi.org/10.31983/jimed.v6i1.5404.
Texto completo da fonteRadaideh, Khaldoon M., Laila M. Matalqah, A. A. Tajuddin, W. I. Fabian Lee, S. Bauk e E. M. Eid Abdel Munem. "Development and evaluation of a Perspex anthropomorphic head and neck phantom for three dimensional conformal radiation therapy (3D-CRT)". Journal of Radiotherapy in Practice 12, n.º 3 (22 de abril de 2013): 272–80. http://dx.doi.org/10.1017/s1460396912000453.
Texto completo da fonteGeso, Moshi, Salem Saeed Alghamdi, Abdulrahman Tajaldeen, Rowa Aljondi, Hind Alghamdi, Ali Zailae, Essam H. Mattar et al. "Modified Contrast-Detail Phantom for Determination of the CT Scanners Abilities for Low-Contrast Detection". Applied Sciences 11, n.º 14 (20 de julho de 2021): 6661. http://dx.doi.org/10.3390/app11146661.
Texto completo da fonteTeixeira, Ana M., e Pedro Martins. "Mechanical characterisation of an organic phantom candidate for breast tissue". Journal of Biomaterials Applications 34, n.º 8 (26 de dezembro de 2019): 1163–70. http://dx.doi.org/10.1177/0885328219895738.
Texto completo da fonteRennoll, Valerie, Ian McLane, Mounya Elhilali e James E. West. "Optimized Acoustic Phantom Design for Characterizing Body Sound Sensors". Sensors 22, n.º 23 (23 de novembro de 2022): 9086. http://dx.doi.org/10.3390/s22239086.
Texto completo da fonteHütter, Larissa, Patrick H. Geoghegan, Paul D. Docherty, Milad S. Lazarjan, Donald Clucas e Mark Jermy. "Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation". Current Directions in Biomedical Engineering 2, n.º 1 (1 de setembro de 2016): 493–97. http://dx.doi.org/10.1515/cdbme-2016-0109.
Texto completo da fontePaulsen, Samantha J., Trevor M. Mitcham, Charlene S. Pan, James Long, Bagrat Grigoryan, Daniel W. Sazer, Collin J. Harlan et al. "Projection-based stereolithography for direct 3D printing of heterogeneous ultrasound phantoms". PLOS ONE 16, n.º 12 (9 de dezembro de 2021): e0260737. http://dx.doi.org/10.1371/journal.pone.0260737.
Texto completo da fonteAnsar, Asnaeni, Dahlang Tahir, Bualkar Abdullah, Nurhasmi, Siti Fatimah e Jusmawang. "Physical Characteristics of Soft Tissue Phantom from Silicone Rubber Based Vulcanization System". Materials Science Forum 966 (agosto de 2019): 194–99. http://dx.doi.org/10.4028/www.scientific.net/msf.966.194.
Texto completo da fonteLee, Jin-Soo, Yong-In Jo, Yeong-Rok Kang, Yong-Uk Kye, Park Il e Dong-Yeon Lee. "Filament material evaluation for breast phantom fabrication using three-dimensional printing". Nuclear Technology and Radiation Protection 35, n.º 4 (2020): 372–79. http://dx.doi.org/10.2298/ntrp2004372l.
Texto completo da fonteTseghai, Granch Berhe, Benny Malengier, Kinde Anlay Fante e Lieva Van Langenhove. "A Long-Lasting Textile-Based Anatomically Realistic Head Phantom for Validation of EEG Electrodes". Sensors 21, n.º 14 (7 de julho de 2021): 4658. http://dx.doi.org/10.3390/s21144658.
Texto completo da fonteWatanabe, Yoichi, Divyajot Sandhu, Leighton Warmington, Sean Moen e Ramachandra Tummala. "Three-dimensional assessment of the effects of high-density embolization material on the absorbed dose in the target for Gamma Knife radiosurgery of arteriovenous malformations". Journal of Neurosurgery 125, Supplement_1 (dezembro de 2016): 123–28. http://dx.doi.org/10.3171/2016.7.gks161545.
Texto completo da fontePassariello, Fausto. "Non-animal ultrasound phantoms for device testing and training". Journal of Theoretical and Applied Vascular Research 2, n.º 3 (30 de junho de 2018): 119–21. http://dx.doi.org/10.24019/jtavr.26.
Texto completo da fonteInal, Aysun. "Dosimetric evaluation of two phases of respiratory movement using a lung equivalent material for radiotherapy treatment planning". Journal of Radiotherapy in Practice 19, n.º 2 (18 de julho de 2019): 157–62. http://dx.doi.org/10.1017/s1460396919000505.
Texto completo da fonteBoote, Evan J., James A. Zagzebski, Ernest L. Madsen e Timothy J. Hall. "Instrument-Independent Acoustic Backscatter Coefficient Imaging". Ultrasonic Imaging 10, n.º 2 (abril de 1988): 121–38. http://dx.doi.org/10.1177/016173468801000204.
Texto completo da fonteMendes, Carlos, e Custódio Peixeiro. "Fabrication, Measurement and Time Decay of the Electromagnetic Properties of Semi-Solid Water-Based Phantoms". Sensors 19, n.º 19 (4 de outubro de 2019): 4298. http://dx.doi.org/10.3390/s19194298.
Texto completo da fonteHariyanto, Aditya Prayugo, Kurnia Hastu Christianti, Agus Rubiyanto, Nasori Nasori, Mohammad Haekal e Endarko Endarko. "The Effect of Pattern and Infill Percentage in 3D Printer for Phantom Radiation Applications". Jurnal ILMU DASAR 23, n.º 2 (27 de julho de 2022): 87. http://dx.doi.org/10.19184/jid.v23i2.27256.
Texto completo da fonteHoy, Carlton FO, Hani E. Naguib e Narinder Paul. "Fabrication and characterization of polymeric cellular foams for low-density computed tomography phantom applications". Journal of Cellular Plastics 55, n.º 1 (24 de outubro de 2018): 73–87. http://dx.doi.org/10.1177/0021955x18806833.
Texto completo da fonteSamson, Damilola Oluwafemi, Ahmad Shukri, Nurul Ab Aziz Hashikin, Siti Hajar Zuber, Mohd Zahri Abdul Aziz, Rokiah Hashim, Mohd Fahmi Mohd Yusof, Nor Ain Rabaiee e Sylvester Jande Gemanam. "Dosimetric Characterization of DSF/NaOH/IA-PAE/R. spp. Phantom Material for Radiation Therapy". Polymers 15, n.º 1 (3 de janeiro de 2023): 244. http://dx.doi.org/10.3390/polym15010244.
Texto completo da fonteShakhov, P. V., G. V. Tikhonowski, E. A. Popova-Kuznetsova, A. Yu Zakharkiv, E. V. Gromushkina, S. M. Klimentov e A. A. Popov. "Studying IR Photohyperthermia Sensitized by Titanium Nitride Nanoparticles Using Tissue-Equivalent Phantoms". Meditsinskaya Fizika 94, n.º 2 (12 de julho de 2022): 85–95. http://dx.doi.org/10.52775/1810-200x-2022-94-2-85-95.
Texto completo da fonteFukuchi, T., S. Takeda, M. Katsuragawa, G. Yabu, S. Watanabe, T. Takahashi e Y. Watanabe. "Gamma-ray computed tomography system with a double-sided strip detector". Journal of Instrumentation 18, n.º 01 (1 de janeiro de 2023): P01030. http://dx.doi.org/10.1088/1748-0221/18/01/p01030.
Texto completo da fonteTins, Bernhard, e Jan Herman Kuiper. "Building an orthopaedic CT phantom for under £50". British Journal of Radiology 92, n.º 1094 (fevereiro de 2019): 20180279. http://dx.doi.org/10.1259/bjr.20180279.
Texto completo da fonteLu, Z. F., J. A. Zagzebski, E. L. Madsen e F. Dong. "A Method for Estimating an Overlying Layer Correction in Quantitative Ultrasound Imaging". Ultrasonic Imaging 17, n.º 4 (outubro de 1995): 269–90. http://dx.doi.org/10.1177/016173469501700402.
Texto completo da fonteKraft, K. A., P. P. Fatouros, G. D. Clarke e P. R. S. Kishore. "An MRI phantom material for quantitative relaxometry". Magnetic Resonance in Medicine 5, n.º 6 (dezembro de 1987): 555–62. http://dx.doi.org/10.1002/mrm.1910050606.
Texto completo da fonteNeidhardt, M., J. Ohlsen, N. Hoffmann e A. Schlaefer. "Parameter Identification for Ultrasound Shear Wave Elastography Simulation". Current Directions in Biomedical Engineering 7, n.º 1 (1 de agosto de 2021): 35–38. http://dx.doi.org/10.1515/cdbme-2021-1008.
Texto completo da fontede Korte, C. L., E. I. Céspedes, A. F. W. van der Steen, B. Norder e K. te Nijenhuis. "Elastic and Acoustic Properties of Vessel Mimicking Material for Elasticity Imaging". Ultrasonic Imaging 19, n.º 2 (abril de 1997): 112–26. http://dx.doi.org/10.1177/016173469701900202.
Texto completo da fonteMonzari, Shaghayegh F., Ghazale Geraily, Tahereh Hadisi nia, Soraya Salmanian, Heydar Toolee e Mostafa Farzin. "Fabrication of anthropomorphic phantoms for use in total body irradiations studies". Journal of Radiotherapy in Practice 19, n.º 3 (7 de outubro de 2019): 242–47. http://dx.doi.org/10.1017/s1460396919000591.
Texto completo da fonteFiser, Ondrej, Sebastian Ley, Marko Helbig, Jürgen Sachs, Michaela Kantova e Jan Vrba. "Temperature dependent dielectric spectroscopy of muscle tissue phantom". International Journal of Microwave and Wireless Technologies 12, n.º 9 (19 de março de 2020): 885–91. http://dx.doi.org/10.1017/s1759078720000203.
Texto completo da fonteDukov, Nikolay, Kristina Bliznakova, Nikiforos Okkalidis, Tsvetelina Teneva, Elitsa Encheva e Zhivko Bliznakov. "Thermoplastic 3D printing technology using a single filament for producing realistic patient-derived breast models". Physics in Medicine & Biology 67, n.º 4 (10 de fevereiro de 2022): 045008. http://dx.doi.org/10.1088/1361-6560/ac4c30.
Texto completo da fonteXie, Tianci, Bo He, Qieming Shi, Jinqian Qian, Wenjing Hao, Song Li, Elfed Lewis e Weimin Sun. "Measurement of scattered rays from different materials using an inorganic scintillator based optical fiber sensor and its application in radiotherapy". Biomedical Physics & Engineering Express 8, n.º 2 (21 de janeiro de 2022): 025004. http://dx.doi.org/10.1088/2057-1976/ac48e3.
Texto completo da fonteChew, Kim Mey, Rubita Sudirman, Norhudah Seman e Ching Yee Yong. "Human Brain Phantom Modeling: Concentration and Temperature Effects on Relative Permittivity". Advanced Materials Research 646 (janeiro de 2013): 191–96. http://dx.doi.org/10.4028/www.scientific.net/amr.646.191.
Texto completo da fonteRadojcic, Đeni Smilovic, David Rajlic, Bozidar Casar, Manda Svabic Kolacio, Nevena Obajdin, Dario Faj e Slaven Jurkovic. "Evaluation of two-dimensional dose distributions for pre-treatment patient-specific IMRT dosimetry". Radiology and Oncology 52, n.º 3 (30 de abril de 2018): 346–52. http://dx.doi.org/10.2478/raon-2018-0019.
Texto completo da fonteKhattak, M. A., Abdoulhdi A. Borhana, Lailatul Fitriyah A. Shafii e Rustam Khan. "MCNPX’S Water Equivalent Thickness Simulation of Material with Different Density via Proton Beam Irradiation". International Journal of Engineering & Technology 7, n.º 4.35 (30 de novembro de 2018): 678. http://dx.doi.org/10.14419/ijet.v7i4.35.23088.
Texto completo da fonteMami-Zadeh, H., R. Solgi, J. F. Carrier e H. Ghadiri. "Material classification based on Dual-Energy Micro-CT images by the Gaussian mixture model." Journal of Instrumentation 17, n.º 02 (1 de fevereiro de 2022): P02001. http://dx.doi.org/10.1088/1748-0221/17/02/p02001.
Texto completo da fonteOlsen, J. B., A. Skretting e A. Widmark. "Assessment of image quality and total performance in norwegian mammography laboratories". Acta Radiologica 39, n.º 5 (setembro de 1998): 507–13. http://dx.doi.org/10.1080/02841859809172216.
Texto completo da fonteAbd Rahman, Nurul Huda, Yoshihide Yamada e Muhammad Shakir Amin Nordin. "Analysis on the Effects of the Human Body on the Performance of Electro-Textile Antennas for Wearable Monitoring and Tracking Application". Materials 12, n.º 10 (19 de maio de 2019): 1636. http://dx.doi.org/10.3390/ma12101636.
Texto completo da fonteMuellensiefen, Mara, Bernhard Tins, Jan-Herman Kuiper, Marc-André Weber e Holger Krakowski-Roosen. "Development of a total hip replacement phantom for the assessment of CT-image quality". Acta Radiologica 61, n.º 12 (9 de março de 2020): 1644–52. http://dx.doi.org/10.1177/0284185120907981.
Texto completo da fonteGrewal, Parvind K., Majid Shokoufi, Jeff Liu, Krishnan Kalpagam e Kirpal S. Kohli. "Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging". Journal of Electrical Bioimpedance 5, n.º 1 (8 de agosto de 2019): 34–39. http://dx.doi.org/10.5617/jeb.781.
Texto completo da fonteBelmont, Barry, Robert E. Dodde e Albert J. Shih. "Impedance of tissue-mimicking phantom material under compression". Journal of Electrical Bioimpedance 4, n.º 1 (28 de julho de 2019): 2–12. http://dx.doi.org/10.5617/jeb.443.
Texto completo da fonteSato, Fuminobu, Tatsuro Maekawa, Tomoki Sakiyama, Naoki Zushi, Kikuo Shimizu, Yushi Kato, Isao Murata, Takayoshi Yamamoto e Toshiyuki Iida. "Development of human hand phantom containing radiophotoluminescence material". Radiation Measurements 85 (fevereiro de 2016): 18–25. http://dx.doi.org/10.1016/j.radmeas.2015.12.006.
Texto completo da fonteArenas, Maria Alejandra Ardila, Dirk Gutkelch, Olaf Kosch, Rüdiger Brühl, Frank Wiekhorst e Norbert Löwa. "Development of Phantoms for Multimodal Magnetic Resonance Imaging and Magnetic Particle Imaging". Polymers 14, n.º 19 (20 de setembro de 2022): 3925. http://dx.doi.org/10.3390/polym14193925.
Texto completo da fonteSaini, Amit, V. P. Pandey, Avtar Singh e Pankaj Kumar. "Evaluating impact of medium variation on dose calculated through planning system in a low cost in-house phantom". Biomedical Physics & Engineering Express 8, n.º 2 (22 de fevereiro de 2022): 025022. http://dx.doi.org/10.1088/2057-1976/ac53bc.
Texto completo da fonteHunold, Alexander, Daniel Strohmeier, Patrique Fiedler e Jens Haueisen. "Head phantoms for electroencephalography and transcranial electric stimulation: a skull material study". Biomedical Engineering / Biomedizinische Technik 63, n.º 6 (27 de novembro de 2018): 683–89. http://dx.doi.org/10.1515/bmt-2017-0069.
Texto completo da fonteClark, Peter J., Giuseppe Forte, Mark J. H. Simmons e E. Hugh Stitt. "Towards 3D-Electrical Capacitance Tomography for Interface Detection". Johnson Matthey Technology Review 60, n.º 2 (1 de abril de 2016): 164–75. http://dx.doi.org/10.1595/205651316x691537.
Texto completo da fonte