Artigos de revistas sobre o tema "Phage interactions"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Phage interactions".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Stone, Edel, Katrina Campbell, Irene Grant e Olivia McAuliffe. "Understanding and Exploiting Phage–Host Interactions". Viruses 11, n.º 6 (18 de junho de 2019): 567. http://dx.doi.org/10.3390/v11060567.
Texto completo da fonteSacher, Jessica C., Muhammad Afzal Javed, Clay S. Crippen, James Butcher, Annika Flint, Alain Stintzi e Christine M. Szymanski. "Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress". Viruses 13, n.º 10 (29 de setembro de 2021): 1955. http://dx.doi.org/10.3390/v13101955.
Texto completo da fonteBlasche, Sonja, Stefan Wuchty, Seesandra V. Rajagopala e Peter Uetz. "The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli". Journal of Virology 87, n.º 23 (18 de setembro de 2013): 12745–55. http://dx.doi.org/10.1128/jvi.02495-13.
Texto completo da fonteZhang, Mingyue, Yanan Zhou, Xinyuan Cui e Lifeng Zhu. "The Potential of Co-Evolution and Interactions of Gut Bacteria–Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis". Microorganisms 12, n.º 4 (31 de março de 2024): 713. http://dx.doi.org/10.3390/microorganisms12040713.
Texto completo da fonteKaźmierczak, Zuzanna, Joanna Majewska, Magdalena Milczarek, Barbara Owczarek e Krystyna Dąbrowska. "Circulation of Fluorescently Labelled Phage in a Murine Model". Viruses 13, n.º 2 (14 de fevereiro de 2021): 297. http://dx.doi.org/10.3390/v13020297.
Texto completo da fonteDicks, Leon M. T., e Wian Vermeulen. "Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages". Viruses 16, n.º 3 (20 de março de 2024): 478. http://dx.doi.org/10.3390/v16030478.
Texto completo da fonteDunne, Matthew, Mario Hupfeld, Jochen Klumpp e Martin Loessner. "Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages". Viruses 10, n.º 8 (28 de julho de 2018): 397. http://dx.doi.org/10.3390/v10080397.
Texto completo da fonteTan, Demeng, Lone Gram e Mathias Middelboe. "Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum". Applied and Environmental Microbiology 80, n.º 10 (7 de março de 2014): 3128–40. http://dx.doi.org/10.1128/aem.03544-13.
Texto completo da fonteDeveau, Hélène, Marie-Rose Van Calsteren e Sylvain Moineau. "Effect of Exopolysaccharides on Phage-Host Interactions in Lactococcus lactis". Applied and Environmental Microbiology 68, n.º 9 (setembro de 2002): 4364–69. http://dx.doi.org/10.1128/aem.68.9.4364-4369.2002.
Texto completo da fonteLoessner, Holger, Insea Schlattmeier, Marie Anders-Maurer, Isabelle Bekeredjian-Ding, Christine Rohde, Johannes Wittmann, Cornelia Pokalyuk, Oleg Krut e Christel Kamp. "Kinetic Fingerprinting Links Bacteria-Phage Interactions with Emergent Dynamics: Rapid Depletion of Klebsiella pneumoniae Indicates Phage Synergy". Antibiotics 9, n.º 7 (14 de julho de 2020): 408. http://dx.doi.org/10.3390/antibiotics9070408.
Texto completo da fonteWANG, WENDI. "DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT". Journal of Biological Systems 25, n.º 04 (dezembro de 2017): 697–713. http://dx.doi.org/10.1142/s0218339017400010.
Texto completo da fonteRomero, Dennis A., Damian Magill, Anne Millen, Philippe Horvath e Christophe Fremaux. "Dairy lactococcal and streptococcal phage–host interactions: an industrial perspective in an evolving phage landscape". FEMS Microbiology Reviews 44, n.º 6 (5 de outubro de 2020): 909–32. http://dx.doi.org/10.1093/femsre/fuaa048.
Texto completo da fonteKraus, Samuel, Megan L. Fletcher, Urszula Łapińska, Krina Chawla, Evan Baker, Erin L. Attrill, Paul O’Neill et al. "Phage-induced efflux down-regulation boosts antibiotic efficacy". PLOS Pathogens 20, n.º 6 (28 de junho de 2024): e1012361. http://dx.doi.org/10.1371/journal.ppat.1012361.
Texto completo da fonteStachurska, Xymena, Krzysztof Cendrowski, Kamila Pachnowska, Agnieszka Piegat, Ewa Mijowska e Paweł Nawrotek. "Nanoparticles Influence Lytic Phage T4-like Performance In Vitro". International Journal of Molecular Sciences 23, n.º 13 (28 de junho de 2022): 7179. http://dx.doi.org/10.3390/ijms23137179.
Texto completo da fonteTan, Demeng, Yiyuan Zhang, Mengjun Cheng, Shuai Le, Jingmin Gu, Juan Bao, Jinhong Qin, Xiaokui Guo e Tongyu Zhu. "Characterization of Klebsiella pneumoniae ST11 Isolates and Their Interactions with Lytic Phages". Viruses 11, n.º 11 (19 de novembro de 2019): 1080. http://dx.doi.org/10.3390/v11111080.
Texto completo da fonteDuplessis, Martin, Céline M. Lévesque e Sylvain Moineau. "Characterization of Streptococcus thermophilus Host Range Phage Mutants". Applied and Environmental Microbiology 72, n.º 4 (abril de 2006): 3036–41. http://dx.doi.org/10.1128/aem.72.4.3036-3041.2006.
Texto completo da fonteMarsh, P., e E. M. H. Wellington. "Phage-host interactions in soil". FEMS Microbiology Ecology 15, n.º 1-2 (novembro de 1994): 99–107. http://dx.doi.org/10.1111/j.1574-6941.1994.tb00234.x.
Texto completo da fonteCenens, William, Angella Makumi, Mehari Tesfazgi Mebrhatu, Rob Lavigne e Abram Aertsen. "Phage–host interactions during pseudolysogeny". Bacteriophage 3, n.º 1 (janeiro de 2013): e25029. http://dx.doi.org/10.4161/bact.25029.
Texto completo da fonteTan, Demeng, Amalie Dahl e Mathias Middelboe. "Vibriophages Differentially Influence Biofilm Formation by Vibrio anguillarum Strains". Applied and Environmental Microbiology 81, n.º 13 (24 de abril de 2015): 4489–97. http://dx.doi.org/10.1128/aem.00518-15.
Texto completo da fonteLi, Na, Yigang Zeng, Bijie Hu, Tongyu Zhu, Sine Lo Svenningsen, Mathias Middelboe e Demeng Tan. "Interactions between the Prophage 919TP and Its Vibrio cholerae Host: Implications of gmd Mutation for Phage Resistance, Cell Auto-Aggregation, and Motility". Viruses 13, n.º 12 (23 de novembro de 2021): 2342. http://dx.doi.org/10.3390/v13122342.
Texto completo da fonteZhang, Bingyan, Jiayi Xu, Xiaoqi He, Yigang Tong e Huiying Ren. "Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis". Microorganisms 10, n.º 8 (7 de agosto de 2022): 1590. http://dx.doi.org/10.3390/microorganisms10081590.
Texto completo da fonteClokie, Martha, e Thomas Sicheritz-Ponte´n. "Lungs, Liposomes, Libraries, and Likely Interactions Between Phages and Eukaryotic Cells". PHAGE 4, n.º 1 (1 de março de 2023): 1–2. http://dx.doi.org/10.1089/phage.2023.29041.editorial.
Texto completo da fonteMi, Yanze, Yile He, Jinhui Mi, Yunfei Huang, Huahao Fan, Lihua Song, Xiaoping An, Shan Xu, Mengzhe Li e Yigang Tong. "Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage–Host Interactions". International Journal of Molecular Sciences 24, n.º 21 (26 de outubro de 2023): 15594. http://dx.doi.org/10.3390/ijms242115594.
Texto completo da fonteEsteves, Nathaniel C., Danielle N. Bigham e Birgit E. Scharf. "Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi". PLOS Pathogens 19, n.º 8 (3 de agosto de 2023): e1011537. http://dx.doi.org/10.1371/journal.ppat.1011537.
Texto completo da fonteAttai, Hedieh, e Pamela J. B. Brown. "Isolation and Characterization T4- and T7-Like Phages that Infect the Bacterial Plant Pathogen Agrobacterium tumefaciens". Viruses 11, n.º 6 (7 de junho de 2019): 528. http://dx.doi.org/10.3390/v11060528.
Texto completo da fonteMaffei, Enea, Aisylu Shaidullina, Marco Burkolter, Yannik Heyer, Fabienne Estermann, Valentin Druelle, Patrick Sauer et al. "Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection". PLOS Biology 19, n.º 11 (16 de novembro de 2021): e3001424. http://dx.doi.org/10.1371/journal.pbio.3001424.
Texto completo da fonteKarlsson, Fredrik, Carl A. K. Borrebaeck, Nina Nilsson e Ann-Christin Malmborg-Hager. "The Mechanism of Bacterial Infection by Filamentous Phages Involves Molecular Interactions between TolA and Phage Protein 3 Domains". Journal of Bacteriology 185, n.º 8 (15 de abril de 2003): 2628–34. http://dx.doi.org/10.1128/jb.185.8.2628-2634.2003.
Texto completo da fonteMäntynen, Sari, Elina Laanto, Hanna M. Oksanen, Minna M. Poranen e Samuel L. Díaz-Muñoz. "Black box of phage–bacterium interactions: exploring alternative phage infection strategies". Open Biology 11, n.º 9 (setembro de 2021): 210188. http://dx.doi.org/10.1098/rsob.210188.
Texto completo da fonteSchiettekatte, Olivier, Elsa Beurrier, Luisa De Sordi e Anne Chevallereau. "“French Phage Network” Annual Conference—Seventh Meeting Report". Viruses 15, n.º 2 (10 de fevereiro de 2023): 495. http://dx.doi.org/10.3390/v15020495.
Texto completo da fonteTaslem Mourosi, Jarin, Ayobami Awe, Wenzheng Guo, Himanshu Batra, Harrish Ganesh, Xiaorong Wu e Jingen Zhu. "Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key “Blueprint” for Reprogramming Phage Host Range". International Journal of Molecular Sciences 23, n.º 20 (12 de outubro de 2022): 12146. http://dx.doi.org/10.3390/ijms232012146.
Texto completo da fonteBeggs, Grace A., e Bonnie L. Bassler. "Phage small proteins play large roles in phage–bacterial interactions". Current Opinion in Microbiology 80 (agosto de 2024): 102519. http://dx.doi.org/10.1016/j.mib.2024.102519.
Texto completo da fonteCairns, Johannes, Sebastián Coloma, Kaarina Sivonen e Teppo Hiltunen. "Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability". Royal Society Open Science 3, n.º 12 (dezembro de 2016): 160839. http://dx.doi.org/10.1098/rsos.160839.
Texto completo da fonteNilsson, Emelie, Oliver W. Bayfield, Daniel Lundin, Alfred A. Antson e Karin Holmfeldt. "Diversity and Host Interactions among Virulent and Temperate Baltic Sea Flavobacterium Phages". Viruses 12, n.º 2 (30 de janeiro de 2020): 158. http://dx.doi.org/10.3390/v12020158.
Texto completo da fonteMohammed, Manal, e Beata Orzechowska. "Characterisation of Phage Susceptibility Variation in Salmonellaenterica Serovar Typhimurium DT104 and DT104b". Microorganisms 9, n.º 4 (17 de abril de 2021): 865. http://dx.doi.org/10.3390/microorganisms9040865.
Texto completo da fonteCarroll-Portillo, Amanda, e Henry C. Lin. "Exploring Mucin as Adjunct to Phage Therapy". Microorganisms 9, n.º 3 (28 de fevereiro de 2021): 509. http://dx.doi.org/10.3390/microorganisms9030509.
Texto completo da fonteFlores, C. O., J. R. Meyer, S. Valverde, L. Farr e J. S. Weitz. "Statistical structure of host-phage interactions". Proceedings of the National Academy of Sciences 108, n.º 28 (27 de junho de 2011): E288—E297. http://dx.doi.org/10.1073/pnas.1101595108.
Texto completo da fonteGuerrero-Ferreira, R., e E. Wright. "Structural Analysis of Proteobacteria-Phage Interactions". Microscopy and Microanalysis 16, S2 (julho de 2010): 1066–67. http://dx.doi.org/10.1017/s143192761006160x.
Texto completo da fonteDeWitt, Natalie. "Mapping protein interactions by phage display". Nature Biotechnology 17, n.º 12 (dezembro de 1999): 1150. http://dx.doi.org/10.1038/70682.
Texto completo da fontede Sousa, Jorge A. M., Amandine Buffet, Matthieu Haudiquet, Eduardo P. C. Rocha e Olaya Rendueles. "Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation". ISME Journal 14, n.º 12 (30 de julho de 2020): 2980–96. http://dx.doi.org/10.1038/s41396-020-0726-z.
Texto completo da fonteKoonjan, Shazeeda, Carlos Cardoso Palacios e Anders S. Nilsson. "Population Dynamics of a Two Phages–One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57". Pharmaceuticals 15, n.º 3 (22 de fevereiro de 2022): 268. http://dx.doi.org/10.3390/ph15030268.
Texto completo da fonteZborowsky, Sophia, e Debbie Lindell. "Resistance in marine cyanobacteria differs against specialist and generalist cyanophages". Proceedings of the National Academy of Sciences 116, n.º 34 (5 de agosto de 2019): 16899–908. http://dx.doi.org/10.1073/pnas.1906897116.
Texto completo da fonteBeckett, Stephen J., e Hywel T. P. Williams. "Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks". Interface Focus 3, n.º 6 (6 de dezembro de 2013): 20130033. http://dx.doi.org/10.1098/rsfs.2013.0033.
Texto completo da fonteLaanto, Elina, Kati Mäkelä, Ville Hoikkala, Janne J. Ravantti e Lotta-Riina Sundberg. "Adapting a Phage to Combat Phage Resistance". Antibiotics 9, n.º 6 (29 de maio de 2020): 291. http://dx.doi.org/10.3390/antibiotics9060291.
Texto completo da fonteSegundo-Arizmendi, Nallelyt, Dafne Arellano-Maciel, Abraham Rivera-Ramírez, Adán Manuel Piña-González, Gamaliel López-Leal e Efren Hernández-Baltazar. "Bacteriophages: A Challenge for Antimicrobial Therapy". Microorganisms 13, n.º 1 (7 de janeiro de 2025): 100. https://doi.org/10.3390/microorganisms13010100.
Texto completo da fonteJończyk-Matysiak, Ewa, Beata Weber-Dąbrowska, Barbara Owczarek, Ryszard Międzybrodzki, Marzanna Łusiak-Szelachowska, Norbert Łodej e Andrzej Górski. "Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics". Viruses 9, n.º 6 (14 de junho de 2017): 150. http://dx.doi.org/10.3390/v9060150.
Texto completo da fonteBichet, Marion C., Jack Adderley, Laura Avellaneda-Franco, Isabelle Magnin-Bougma, Natasha Torriero-Smith, Linden J. Gearing, Celine Deffrasnes et al. "Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival". PLOS Biology 21, n.º 10 (26 de outubro de 2023): e3002341. http://dx.doi.org/10.1371/journal.pbio.3002341.
Texto completo da fonteZhang, Zheng, Fen Yu, Yuanqiang Zou, Ye Qiu, Aiping Wu, Taijiao Jiang e Yousong Peng. "Phage protein receptors have multiple interaction partners and high expressions". Bioinformatics 36, n.º 10 (25 de fevereiro de 2020): 2975–79. http://dx.doi.org/10.1093/bioinformatics/btaa123.
Texto completo da fonteGillespie, James W., Liping Yang, Laura Maria De Plano, Murray A. Stackhouse e Valery A. Petrenko. "Evolution of a Landscape Phage Library in a Mouse Xenograft Model of Human Breast Cancer". Viruses 11, n.º 11 (26 de outubro de 2019): 988. http://dx.doi.org/10.3390/v11110988.
Texto completo da fonteWinans, James B., Benjamin R. Wucher e Carey D. Nadell. "Multispecies biofilm architecture determines bacterial exposure to phages". PLOS Biology 20, n.º 12 (22 de dezembro de 2022): e3001913. http://dx.doi.org/10.1371/journal.pbio.3001913.
Texto completo da fonteMolina, Felipe, Manuel Menor-Flores, Lucía Fernández, Miguel A. Vega-Rodríguez e Pilar García. "Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails". Scientific Reports 12, n.º 1 (14 de fevereiro de 2022). http://dx.doi.org/10.1038/s41598-022-06422-1.
Texto completo da fonte