Siga este link para ver outros tipos de publicações sobre o tema: Pests.

Artigos de revistas sobre o tema "Pests"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pests".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Koehler, Philip G. "Urban Pests and Pest Management". EDIS 2015, n.º 2 (13 de março de 2015): 5. http://dx.doi.org/10.32473/edis-in1073-2013.

Texto completo da fonte
Resumo:
The warm southern states provide an ideal environment for a wide variety of pests — and because almost everyone has problems with pests, most urban areas are sprayed with pesticides. 30 to 40 percent of pesticide use is in urban areas, but most pesticide applications are unnecessary and can result in environmental contamination and human exposure to pesticides. This 5-page fact sheet from Pests in and around the Southern Home (SP486) introduces integrated pest management practices that can help reduce pesticide use in the home. Written by P.G. Koehler and published by the UF Department of Entomology and Nematology, October 2013. SP486A/IN1073: Urban Pests and Pest Management (ufl.edu)
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jarvis, Peter J. "Urban Cats as Pests and Pets". Environmental Conservation 17, n.º 2 (1990): 169–71. http://dx.doi.org/10.1017/s0376892900031982.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Grieshop, James I. "Licking Pests: Pest Management and Postage". American Entomologist 36, n.º 4 (1990): 283–88. http://dx.doi.org/10.1093/ae/36.4.283.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Momunova, G. "Fruit Trees Pests and Pest Control". Bulletin of Science and Practice, n.º 6 (15 de junho de 2023): 138–41. http://dx.doi.org/10.33619/2414-2948/91/17.

Texto completo da fonte
Resumo:
Currently, pests cause great harm to fruit trees. 22 pests damaging fruit trees were identified and their species composition was determined. Some of them, under favorable conditions, multiply abundantly and damage the fruits, trunks, roots, branches and leaves of trees. In gardens, depending on the number of species, biological characteristics, harmfulness and nature of damage, the following activities can be carried out: 1) agrotechnical; 2) physical and mechanical; 3) biological methods. In recent years, much attention has been paid to the use of predominantly biological methods in pest control. Chemical methods of pest control have lost their effectiveness in recent years. This is due to the fact that in the course of the fight against this or that pest, hundreds and thousands of beneficial insects also disappear in nature. Not only that, but the birds that feed on them, etc., the animals are also poisoned, and their numbers are decreasing. Большой вред плодовым деревьям наносят их вредители. Выявлено 22 вредителя, повреждающих плодовые деревья, и определен их видовой состав. Некоторые из них при благоприятных условиях обильно размножаются и повреждают плоды, стволы, корни, ветви и листья деревьев. В садах, в зависимости от количества видов, биологических особенностей, вредоносности и характера повреждений, можно проводить следующие мероприятия: 1) агротехнические; 2) физико-механические; 3) биологические методы. В последние годы большое внимание уделяется использованию в борьбе с вредителями преимущественно биологических методов. Химические методы борьбы с вредителями в последние годы утратили свою эффективность. Это связано с тем, что в ходе борьбы с тем или иным вредителем в природе также исчезают сотни и тысячи полезных насекомых, птиц и т. д. Количество животных также уменьшается.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Khudarganov, Kamoladdin, Nizom Azimov e Jurabek Yakhoev. "Guidelines On Pest Risk Analysis: Decision-Support Scheme For Quarantine Pests". American Journal of Agriculture and Biomedical Engineering 03, n.º 12 (30 de dezembro de 2021): 5–8. http://dx.doi.org/10.37547/tajabe/volume03issue12-02.

Texto completo da fonte
Resumo:
This standard is based on ISPM No. 11, «Pest risk analysis for quarantine pests, including an analysis of environmental risks and risks posed by living modified organisms». It provides detailed instructions for the following stages of pest risk analysis (PRA) for quarantine pests: preparatory stage, pest categorization, assessment of the likelihood of introduction, assessment of potential economic consequences and assessment of pest risk management. It contains a framework, based on successive questions, to decide whether an organism has the characteristics of a quarantine pest and to determine, if necessary, possible management options.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tindall, Gillian. "Animals in the Home: Pets or Pests?" Journal of the Royal Society of Medicine 79, n.º 12 (dezembro de 1986): 748–49. http://dx.doi.org/10.1177/014107688607901223.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Morgan, D., e Mike G. Solomon. "PEST-MAN : A FORECASTING SYSTEM FOR ORCHARD PESTS". Acta Horticulturae, n.º 416 (junho de 1996): 273–78. http://dx.doi.org/10.17660/actahortic.1996.416.34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kirkwood, J. K. "Animals at Home – Pets as Pests: A Review". Journal of the Royal Society of Medicine 80, n.º 2 (fevereiro de 1987): 97–100. http://dx.doi.org/10.1177/014107688708000212.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

O'CONNOR, T. P. "Pets and pests in Roman and medieval Britain". Mammal Review 22, n.º 2 (junho de 1992): 107–13. http://dx.doi.org/10.1111/j.1365-2907.1992.tb00126.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ito, Hiroshi C., e Natsuko I. Kondo. "Biological pest control by investing crops in pests". Population Ecology 54, n.º 4 (26 de maio de 2012): 557–71. http://dx.doi.org/10.1007/s10144-012-0325-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Li, Jinyang, Qingdao Huang e Bing Liu. "An SI integrated pest management model with pesticide resistance to susceptible pests". International Journal of Biomathematics 13, n.º 05 (28 de maio de 2020): 2050037. http://dx.doi.org/10.1142/s1793524520500370.

Texto completo da fonte
Resumo:
In this paper, epidemic diseases among pests are assumed to occur, so pests are divided into susceptible pests and infected pests, and only susceptible pests are harmful to crops. Considering spraying pesticides and releasing of natural enemies and infected pests to control pests, as well as the long-term application of the same pesticide to induce resistance, an integrated pest management with pesticide resistance is established. The pollution emission model is introduced to model the action process of pesticides, which well reflects its residual and delay effects. By using comparison theorem of impulsive differential equation and analysis method, the threshold condition for eradication of susceptible pests is obtained. Then we analyze the frequency of spraying pesticide on the success of pests control. It shows that it is not that the more frequently pesticides are applied, the better the result of the susceptible pests control is. From the sensitivity analysis, the key factors on the threshold are obtained. Finally, the strategies to control susceptible pests are given, including switching pesticides and releasing infected pests and natural enemies elastically.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Stejskal, V., R. Aulicky e Z. Kucerova. "Pest control strategies and damage potential of seed-infesting pests in the Czech stores – a review". Plant Protection Science 50, No. 4 (14 de novembro de 2014): 165–73. http://dx.doi.org/10.17221/10/2014-pps.

Texto completo da fonte
Resumo:
This work reviews the historical and current pest risks and research concerning seed storage in the Czech Republic (CR). Stored seed pests (i.e. animals causing injuries to the germ and endosperm) represent a high risk of economic damage due to the high value of seeds coupled with long-term seed storage in small storage units (e.g., boxes, satchels). Rodents represent a significant risk to all types of seeds, especially seeds stored in piles or bags. Mites, psocids, and moths are the main pests of stored grass and vegetable seeds: mites can decrease seed germinability by 52% and psocids caused 9.7% seed weight loss in broken wheat kernels after 3 months of infestation under laboratory conditions. Although beetles (Sitophilus sp., Tribolium sp., Oryzaephilus sp.) and moths (Plodia sp.) are common pests of grain seeds (e.g., wheat, barley, maize), two serious seed pests, Sitotroga cereallela and S. zemays, are rare in the CR. Bruchus pisorum is a common pest of pea seeds, while other Bruchids are rare in the Czech legume seed stores. Currently, the control of seed pests is becoming difficult because the efficient pesticides (e.g., methylbromide, dichlorvos, drinking anticoagulant rodent baits) for seed protection have been lost without the development of adequate substitutes. New research on seed protection in the CR using biological control (mite predators Cheyletus sp.), low pressure, modified atmospheres, and hydrogen cyanide is overviewed.  
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Peña, J. E. "INTEGRATED PEST MANAGEMENT AND MONITORING TECHNIQUES FOR MANGO PESTS". Acta Horticulturae, n.º 645 (fevereiro de 2004): 151–61. http://dx.doi.org/10.17660/actahortic.2004.645.11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Amporn Winotai. "Integrated Pest Management of Important Insect Pests of Coconut1". CORD 30, n.º 1 (1 de abril de 2014): 19. http://dx.doi.org/10.37833/cord.v30i1.82.

Texto completo da fonte
Resumo:
IPM or Integrated pest management is a strategy that integrates various methods of cultural, physical, mechanical, biological control and selection of pesticides as the last option. IPM is not only cost effective but simultaneously prioritized human and environmental safety. IPM is based on farmer’s local knowledge, acceptance and education. Several insects were reported as coconut pests in Asia and Pacific region. Among these pests, rhinoceros beetle, red palm weevil, coconut hispine beetle, coconut black headed caterpillar and coconut scale currently causing severe damage to coconut palms in the region. Rhinoceros beetle, Oryctes rhinoceros Linnaeus (Coleoptera: Scarabaeidae) is native to South Asia and Southeast Asia. Management of this pest is a combination of sanitation in plantations and surrounding, biological control by using Metarhizium anisopliae, Oryctes virus and pheromone trapping. Red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) outbreaks usually occur after infestation of rhinoceros beetle. Keeping the rhinoceros under control results in keeping the red palm weevil under control too. Pheromone trapping is also developed for reduction of this pest. Coconut hispine beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomellidae), is an invasive pest occurs in Southeast Asia and Pacific region. Biological control of the pest is recommended by releasing two species of parasitoids, Asecodes hispinarus Boucek (Hymenoptera: Eulophidae) and Tetrastichus brontispae Ferriere (Hymenoptera: Eulophidae). Coconut black headed caterpillar, Opisina arenosella Walker (Lepidoptera: Oecophoridae) is one of the key pests of coconut in South Asia and invaded Thailand in 2008. Management of this pest in its native region consisted of: 1) removing and burning of the infested leaves; 2) biological control by releasing parasitoids such as Goniozus nephantidis (Muesebeck), Bracon brevicornis (Wesmael), Brachymeria nephantidis Gahan; and 3) chemical control by trunk injection and applying systemic insecticides in the holes. Bacillus thruringiensis has been recommended for biological control of the black headed caterpillar in Thailand. Coconut scale, Aspidiotus destructor Signoret (Hemiptera: Diaspididae) has been reported as a serious in Philippines. Predators are significant biological control agents in limiting A. destructor populations. The most common natural enemies associated with the coconut scales are the coccinellid beetles Chilocorus spp., Azya trinitatis, Cryptognatha nodiceps, Rhyzobius lophanthae and Pentilia castanea. Local parasitoids, Comperiella, Aphytis and Encarsia also play important roles in keeping the pest under control. Application of insecticides could inducee the infestation of the scale. Biological controls is recommended for suppression of other coconut pests, such as slug caterpillars (Lepidoptera: Limacodidae) such as Parasa lepida Cramer; coconut leaf moth, Artona catoxantha Hampton (Lepidoptera: Zygaenidae); and coconut leafminer, Promecotheca cumingii Baly (Coleoptera: Chrysomelidae).
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

AliNiazee, M. T. "INTEGRATED PEST MANAGEMENT OF HAZELNUT PESTS : A WORLDWIDE PERSPECTIVE". Acta Horticulturae, n.º 445 (maio de 1997): 469–76. http://dx.doi.org/10.17660/actahortic.1997.445.60.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Xu, Jianguo. "World Pest Day: Not for Pests, But for People". China CDC Weekly 2, n.º 24 (2020): 429–30. http://dx.doi.org/10.46234/ccdcw2020.110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bajrachharya, Neelam, e Urmila Dyola. "Arthropod Pests of Pear (Pyrus pyrifolia, Nakai) in Central Horticulture Centre, Kirtipur, Kathmandu, Nepal". Nepalese Journal of Zoology 3, n.º 1 (25 de novembro de 2015): 37–48. http://dx.doi.org/10.3126/njz.v3i1.30864.

Texto completo da fonte
Resumo:
Arthropod pests cause serious threats to pear orchards, resulting heavy reduction in their yield. The present study focused on the arthropod pests of Pear (Pyrus pyrifolia, Nakai), in the Pear orchard of Central Horticulture Centre, Kirtipur, Kathmandu. It was carried out in two seasons: Spring and Summer of 2012. The pests were collected through different methods such as hand picking, knock down process, beating process, sweeping and use of aspirator, depending upon the size of pests. The statistical analyses were performed at 95% confidence level in R-Software (R-Console version2.15.2). Altogether, 12 species of pests belonging to 11 families were observed during the study. The results showed that the pest's population was independent to months (X^2=7.663, df=5, P+0.175), seasons (X^2=0.188, df=1, P+0.664), and sites (F=0.446, df=2, P=0.652), however, population density of pests was higher in June (409) and summer (966). Spider mite (Tetranychus spp.), Aphids (Aphis spp.), Thrips (Scirtothrips spp.) Tortoise beetle (Metrona spp.) and Fruitfly (Dacus spp.) were the common pest species and the most dominant one was the Spider mite (Tetranychus spp.), occurring almost in all months, seasons and sites. The overall diversity index of pear pests was high, i.e, 0.800, however regarding individual species diversity index and dominance index, Spider mite (Tetranuchus spp.) had higher diversity indices, followed by Tortoise beetle (Metriona spp.), Fruit fly (Dacus spp.) and the least was observed in Click Beetle (Agriotes spp.). Although the pest population is independent to months and seasons, the present study showed that pear plants were more affected by pests during hot and warm season.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Glausiusz, Josie. "Indispensable Pests". Science & Spirit 16, n.º 4 (1 de julho de 2005): 54–61. http://dx.doi.org/10.3200/sspt.16.4.54-61.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Murithi, Harun, EN Wosula, DM Lagos-Kutz e Glen Hartman. "SOYBEAN PESTS". African Journal of Food, Agriculture, Nutrition and Development 19, n.º 05 (13 de janeiro de 2020): 15151–54. http://dx.doi.org/10.18697/ajfand.88.silfarmdoc09.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Thompson, Lawrence S. "Library Pests". Library & Archival Security 7, n.º 1 (6 de setembro de 1985): 15–24. http://dx.doi.org/10.1300/j114v07n01_03.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Amy Hassinger. "On Pests". Fourth Genre: Explorations in Nonfiction 11, n.º 1 (2009): 57–68. http://dx.doi.org/10.1353/fge.0.0065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Croft, B. A. "Fruit Pests". Bulletin of the Entomological Society of America 33, n.º 2 (1 de junho de 1987): 108. http://dx.doi.org/10.1093/besa/33.2.108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Shelton, M. "Almond Pests". Bulletin of the Entomological Society of America 33, n.º 3 (1 de setembro de 1987): 199–200. http://dx.doi.org/10.1093/besa/33.3.199.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Bickley, W. E. "Holly Pests". Bulletin of the Entomological Society of America 33, n.º 3 (1 de setembro de 1987): 204. http://dx.doi.org/10.1093/besa/33.3.204a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Raman, K. V. "SURVEY OF DISEASES AND PESTS IN AFRICA: PESTS". Acta Horticulturae, n.º 213 (setembro de 1987): 145–50. http://dx.doi.org/10.17660/actahortic.1987.213.15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Obidzhanov, Dilshod, e Kholbek Erkinov. "Potato Pests In Uzbekistan". American Journal of Agriculture and Biomedical Engineering 03, n.º 07 (30 de julho de 2021): 11–20. http://dx.doi.org/10.37547/tajabe/volume03issue07-02.

Texto completo da fonte
Resumo:
More than 10 kinds of the basic pests have been revealed in the territory of various soil-climatic zones of the Republic. Among them are adventive kinds –the Colorado potato beetle, the whitefly and the potato moth. Biological features of kinds and seasonal dynamics of their development are established; the general tactic of protective methods with application of progressive means and receptions is developed. Precautionary receptions of potato tubers’ protection against potato moth are established and recommended.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Otamirzayev, N., e R. Ibodullayeva. "Type of pests in agrobiocenosis of rice and pest control". E3S Web of Conferences 258 (2021): 04032. http://dx.doi.org/10.1051/e3sconf/202125804032.

Texto completo da fonte
Resumo:
In the article, 10 species of pests that damage rice plants during the season in the rice agrobiocenosis were identified. Leptestheria dahalacensis Sars, Apus concriformis Sh., Corn stalk Ostrinia nubilalis Hb, and Cephus pygmaeus have been reported to cause damage to rice grasses.A growth calendar has been developed. In the pest experiment during the rice germination period, biological effectiveness of the drug was the highest for 15 days, accounted for 93.9%, in the variant treated with Nurell D 55% em.k at rate of 1.5 l/ha. When the variant was treated with Tayshin 500 s.d.g (Clothianidin) at rate of 0.06 kg/ha, the effectives of the drug were 93.3% in 14 days. In the experiment, Nurell D 55% em.k (1.5 l/ha) was used against the main pests (0.06kg/ha) yielded 70.7 q/ha in the variant in which the chemical agent was used, and 10.1 additional yields were reported. The results showed that the yield of “Iskandar” variety was 73.8 q/ha, which was 13.2 q/ha more than the control, when Nurell D 55% em.k (1.5 l/ha) against the main pests was applied. Whereas new chemical Tayshin 500 s.d.g. (0.06kg/ha) was used in the variant, in which the yield was 70.7 q/ha, and it was more by 10.1 q/ha than the control variant.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Latifian, Masoud. "Integrated Pest Management of Date Palm Fruit Pests: A Review". Journal of Entomology 14, n.º 3 (15 de abril de 2017): 112–21. http://dx.doi.org/10.3923/je.2017.112.121.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Hilton, R. J., P. VanBuskirk e P. Westigard. "CONTROL OF SECONDARY PESTS IN A SELECTIVE PEST MANAGEMENT PROGRAM". Acta Horticulturae, n.º 475 (setembro de 1998): 479–86. http://dx.doi.org/10.17660/actahortic.1998.475.60.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Paterson, I., e A. Witt. "Biological control of pest cactus and cactus pests in Africa". Acta Horticulturae, n.º 1343 (setembro de 2022): 563–68. http://dx.doi.org/10.17660/actahortic.2022.1343.71.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kumari, Kiran, Tamoghna Saha e S. N. Singh. "Integrated Pest Management Practices for Major Insect Pests of Rice". Current Journal of Applied Science and Technology 31, n.º 2 (8 de dezembro de 2018): 1–5. http://dx.doi.org/10.9734/cjast/2018/45873.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

MORGAN, D., e M. G. SOLOMON. "PEST-MAN: a forecasting system for apple and pear pests". EPPO Bulletin 23, n.º 4 (dezembro de 1993): 601–5. http://dx.doi.org/10.1111/j.1365-2338.1993.tb00556.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Gould, Fred. "Genetic engineering, integrated pest management and the evolution of pests". Trends in Biotechnology 6, n.º 4 (abril de 1988): S15—S18. http://dx.doi.org/10.1016/0167-7799(88)90007-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Kunz, Sidney E. "Integrated pest management of dipteran pests in the New World". International Journal for Parasitology 17, n.º 2 (fevereiro de 1987): 659–64. http://dx.doi.org/10.1016/0020-7519(87)90143-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Sun, Shulin, e Lansun Chen. "Mathematical modelling to control a pest population by infected pests". Applied Mathematical Modelling 33, n.º 6 (junho de 2009): 2864–73. http://dx.doi.org/10.1016/j.apm.2008.08.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Gould, Fred. "Genetic engineering, integrated pest management and the evolution of pests". Trends in Ecology & Evolution 3, n.º 4 (abril de 1988): S15—S18. http://dx.doi.org/10.1016/0169-5347(88)90131-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Subiyakto, S., T. Yulianti, D. A. Sunarto, S. Sujak, K. S. Wijayanti, N. Hidayah, N. Nurindah, I. G. A. A. Indrayani, S. Supriyono e C. Suhara. "The dynamics of species change, pest status, and new pests on sugarcane in Indonesia". IOP Conference Series: Earth and Environmental Science 1253, n.º 1 (1 de outubro de 2023): 012111. http://dx.doi.org/10.1088/1755-1315/1253/1/012111.

Texto completo da fonte
Resumo:
Abstract This review aims to assess if there has been a change in the species and status of sugarcane pests during a particular period. This information has not yet been made available. This study is crucial, particularly for the developing an Indonesian sugarcane pest management strategy. The review approach involved interpreting the three books published in 1951, 2011, and 2017. The references were (1) The Pests of Crops in Indonesia by Kalshoven (1981), a translation of De Plagen van de Cultuurgewassen in Indonesia published in 1951 (period 1), (2) Sugarcane Pests and Diseases (period 2), and (3) Sugarcane Plant Pest Organism (period 3). The publications described the current status of pest species. In addition, we closely examined additional sources related to the subject themes. The results revealed that some species and pest statuses had shifted, as well as the appearance of new pests on sugarcane. Changes in species, status, and the appearance of new pests on sugarcane resulted from shifting the planting area from rice fields to rainfed land, alterations in agricultural practices, the presence of natural enemies, and climate change. Shoot borer, stem borer, and white grubs were significant sugarcane pests during the three periods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Ansari, Minshad, e Sarah Harding. "Management of Date Palm Pests: Lack of Commercial Input". Outlooks on Pest Management 33, n.º 1 (1 de fevereiro de 2022): 5–7. http://dx.doi.org/10.1564/v33_feb_02.

Texto completo da fonte
Resumo:
According to Statista, the global date market was valued at about $13.4 billion in 2019 and is forecast to reach $16.25 billion by 2025. However, this valuable crop is threatened by numerous pests. In fact, the date palm is associated with 132 species of insect and mite pests, which feed on the leaves, roots, trunk, and fruits on the palm, as well as stored dates. The most economically important pests include the red palm weevil, (Rhynchophorus ferrugineus), old world date mite (Oligonychus afrasiaticus), lesser date moth (Batrachedra amydraula), Dubas date bug (Ommatissus lybicus), green pit scale (Palmaspis phoenicis), carob moth (Ectomyelois ceratoniae), date palm longhorn beetle (Jebusaea hammerschmidti) and almond moth (Cadra castellan). It has been estimated that effective curative approaches for red palm weevil infestations alone could result in savings as high as $104 million. Several research groups are working to find effective solutions to control these pests, but as yet no commercial biocontrol products are registered or available for curative control of the palm beetle and larvae. Therefore, a more robust Integrated Pest Management(IPM) system is needed to reduce the pest damage. Commercial formulations include root treatments, insecticide-based capsules that are injected into the trunk, or foliage/fruit sprays. However, chemical insecticides should not be the only solution to the management of date palm pests, especially those concealed inside the trunk or beneath palm tissues, making them difficult to target. This is primarily because chemical insecticides frequently just kill the target pest's natural enemies, while the pests themselves remain protected within the date palm. Several approaches are used but it has also been shown that resistance against a range of commonly used chemical insecticides (profenophos, imidacloprid, chlorpyrifos, cypermethrin, deltamethrin, spinosad, lambda-cyhalothrin, phosphine) develops after extensive use. Resistance ratios as high as 79-fold have been reported, compared with susceptible control pests. Researchers have reported significantly improved populations of natural enemies of target pests in date palm plantations when chemical insecticide use is reduced. Around 90 species of beneficial predators and parasitoids have so far been reported, suggesting that biological control with microbials could be incorporated into a synchronised IPM programme.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Miles, J., e R. J. Putman. "Mammals as Pests." Journal of Applied Ecology 27, n.º 1 (abril de 1990): 360. http://dx.doi.org/10.2307/2403598.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Silva, S., e M. Fancelli. "BANANA INSECT PESTS". Acta Horticulturae, n.º 490 (setembro de 1998): 385–94. http://dx.doi.org/10.17660/actahortic.1998.490.39.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Dumroese, R. K. "Forest Nursery Pests". Native Plants Journal 13, n.º 3 (1 de setembro de 2012): 257. http://dx.doi.org/10.3368/npj.13.3.257.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Harris, Marvin K. "Controlling Cotton Pests". Science 273, n.º 5282 (20 de setembro de 1996): 1641–42. http://dx.doi.org/10.1126/science.273.5282.1641.b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Bradley, J. R. "Controlling Cotton Pests". Science 273, n.º 5282 (20 de setembro de 1996): 1642. http://dx.doi.org/10.1126/science.273.5282.1642.a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Deaton, W. Randy. "Controlling Cotton Pests". Science 273, n.º 5282 (20 de setembro de 1996): 1641. http://dx.doi.org/10.1126/science.273.5282.1641.a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Eichler, Lauren, e David Baumeister. "Predators and Pests". Environmental Ethics 42, n.º 4 (2020): 295–311. http://dx.doi.org/10.5840/enviroethics202042430.

Texto completo da fonte
Resumo:
The tethering of Indigenous peoples to animality has long been a central mechanism of settler colonialism. Focusing on North America from the seventeenth century to the pres­ent, this essay argues that Indigenous animalization stems from the settler imposition onto Native Americans of dualistic notions of human/animal difference, coupled with the settler view that full humanity hinges on the proper cultivation of land. To further illustrate these claims, we attend to how Native Americans have been and continue to be animalized as both predators and pests, and show how these modes of animalization have and continue to provide settlers motive and justification for the elimination of Native peoples and the extractive domination of Native lands.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Harris, Marvin K. "Controlling Cotton Pests". Science 273, n.º 5282 (20 de setembro de 1996): 1641–42. http://dx.doi.org/10.1126/science.273.5282.1641-b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Bradley, J. R. "Controlling Cotton Pests". Science 273, n.º 5282 (20 de setembro de 1996): 1642. http://dx.doi.org/10.1126/science.273.5282.1642-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Deaton, W. Randy. "Controlling Cotton Pests". Science 273, n.º 5282 (20 de setembro de 1996): 1641. http://dx.doi.org/10.1126/science.273.5282.1641-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Viggiani, G. "PESTS OF APRICOT". Acta Horticulturae, n.º 293 (setembro de 1991): 481–86. http://dx.doi.org/10.17660/actahortic.1991.293.57.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Capinera, John L., e R. G. McKinlay. "Vegetable Crop Pests". Florida Entomologist 76, n.º 1 (março de 1993): 186. http://dx.doi.org/10.2307/3496031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia