Literatura científica selecionada sobre o tema "Permutations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Permutations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Permutations"
Wituła, Roman, Edyta Hetmaniok e Damian Słota. "On Commutation Properties of the Composition Relation of Convergent and Divergent Permutations (Part I)". Tatra Mountains Mathematical Publications 58, n.º 1 (1 de março de 2014): 13–22. http://dx.doi.org/10.2478/tmmp-2014-0002.
Texto completo da fonteSavchuk, M., e M. Burlaka. "Encoding and classification of permutations bу special conversion with estimates of class power". Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, n.º 2 (2019): 36–43. http://dx.doi.org/10.17721/1812-5409.2019/2.3.
Texto completo da fonteAdamczak, William. "A Note on the Structure of Roller Coaster Permutations". Journal of Mathematics Research 9, n.º 3 (24 de maio de 2017): 75. http://dx.doi.org/10.5539/jmr.v9n3p75.
Texto completo da fonteBrualdi, Richard A., e Geir Dahl. "Permutation Matrices, Their Discrete Derivatives and Extremal Properties". Vietnam Journal of Mathematics 48, n.º 4 (24 de março de 2020): 719–40. http://dx.doi.org/10.1007/s10013-020-00392-5.
Texto completo da fonteSenashov, Vasily S., Konstantin A. Filippov e Anatoly K. Shlepkin. "Regular permutations and their applications in crystallography". E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.
Texto completo da fonteGao, Alice L. L., Sergey Kitaev, Wolfgang Steiner e Philip B. Zhang. "On a Greedy Algorithm to Construct Universal Cycles for Permutations". International Journal of Foundations of Computer Science 30, n.º 01 (janeiro de 2019): 61–72. http://dx.doi.org/10.1142/s0129054119400033.
Texto completo da fonteVidybida, Alexander K. "Calculating Permutation Entropy without Permutations". Complexity 2020 (22 de outubro de 2020): 1–9. http://dx.doi.org/10.1155/2020/7163254.
Texto completo da fonteSteingrı́msson, Einar. "Permutation Statistics of Indexed Permutations". European Journal of Combinatorics 15, n.º 2 (março de 1994): 187–205. http://dx.doi.org/10.1006/eujc.1994.1021.
Texto completo da fonteZHOU, YINGCHUN, e MURAD S. TAQQU. "APPLYING BUCKET RANDOM PERMUTATIONS TO STATIONARY SEQUENCES WITH LONG-RANGE DEPENDENCE". Fractals 15, n.º 02 (junho de 2007): 105–26. http://dx.doi.org/10.1142/s0218348x07003526.
Texto completo da fonteMansour, Toufik, Howard Skogman e Rebecca Smith. "Passing through a stack k times". Discrete Mathematics, Algorithms and Applications 11, n.º 01 (fevereiro de 2019): 1950003. http://dx.doi.org/10.1142/s1793830919500034.
Texto completo da fonteTeses / dissertações sobre o assunto "Permutations"
Cox, Charles. "Infinite permutation groups containing all finitary permutations". Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/401538/.
Texto completo da fonteKu, Cheng Yeaw. "Intersecting families of permutations and partial permutations". Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416959.
Texto completo da fonteSteingrímsson, Einar. "Permutations statistics of indexed and poset permutations". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/35952.
Texto completo da fonteWest, Julian 1964. "Permutations with forbidden subsequences, and, stack-sortable permutations". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13641.
Texto completo da fonteCooper, Joshua N. "Quasirandom permutations /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3091341.
Texto completo da fonteHyatt, Matthew. "Quasisymmetric Functions and Permutation Statistics for Coxeter Groups and Wreath Product Groups". Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/609.
Texto completo da fonteBoberg, Jonas. "Counting Double-Descents and Double-Inversions in Permutations". Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54431.
Texto completo da fonteMaazoun, Mickaël. "Permutons limites universels de permutations aléatoires à motifs exclus". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN064.
Texto completo da fontePattern-avoiding permutations are an important theme of enumerative combinatorics, and their study from a probabilistic point of view form a recently expanding subject, for instance by considering the scaling limit behavior, in the permuton sense, of the diagram of a large uniform permutation in a pattern-avoiding class. The case of separable permutations was studied by Bassino, Bouvel, Féray, Gerin and Pierrot, who showed convergence to a random object, the Brownian separable permuton. We provide an explicit construction through stochastic processes, allowing to study the fractal properties, and compute some statistics, of this object. We study the universality class of this permuton among classes admitting a finite specification in the sense of the so-called decomposition substitution. For many of them, under a simple combinatorial condition, their limit is a one-parameter deformation of the Brownian permuton. In the specific instance of substitution-closed classes, we also consider sufficient conditions to escape this universality class, and introduct the family of stable permutons. Cographs are the inversion graphs of separable permutations. Using similar methods, we investigate the scaling limit in the graphon sense of uniform labeled and unlabeled cographs. We also show that the normalized degree of a uniform vertex in a uniform cograph is asymptotically uniform. Finally, we study local and scaling limits of Baxter permutations, a class avoiding vincular patterns. This family is in bijection with many remarkable combinatorial objects, in particular bipolar oriented maps. Our result has interpretations in terms of the Peanosphere convergence of such maps, completing a result of Gwynne, Holden and Sun
Bogaerts, Mathieu. "Codes et tableaux de permutations, construction, énumération et automorphismes". Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210302.
Texto completo da fonteUn code de permutations G(n,d) un sous-ensemble C de Sym(n) tel que la distance de Hamming D entre deux éléments de C est supérieure ou égale à d. Dans cette thèse, le groupe des isométries de (Sym(n),D) est déterminé et il est prouvé que ces isométries sont des automorphismes du schéma d'association induit sur Sym(n) par ses classes de conjugaison. Ceci mène, par programmation linéaire, à de nouveaux majorants de la taille maximale des G(n,d) pour n et d fixés et n compris entre 11 et 13. Des algorithmes de génération avec rejet d'objets isomorphes sont développés. Pour classer les G(n,d) non isométriques, des invariants ont été construits et leur efficacité étudiée. Tous les G(4,3) et les G(5,4) ont été engendrés à une isométrie près, il y en a respectivement 61 et 9445 (dont 139 sont maximaux et décrits explicitement). D’autres classes de G(n,d) sont étudiées.
A permutation code G(n,d) is a subset C of Sym(n) such that the Hamming distance D between two elements of C is larger than or equal to d. In this thesis, we characterize the isometry group of the metric space (Sym(n),D) and we prove that these isometries are automorphisms of the association scheme induced on Sym(n) by the conjugacy classes. This leads, by linear programming, to new upper bounds for the maximal size of G(n,d) codes for n and d fixed and n between 11 and 13. We develop generating algorithms with rejection of isomorphic objects. In order to classify the G(n,d) codes up to isometry, we construct invariants and study their efficiency. We generate all G(4,3) and G(4,5)codes up to isometry; there are respectively 61 and 9445 of them. Precisely 139 out of the latter codes are maximal and explicitly described. We also study other classes of G(n,d)codes.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Dansie, B. R. "The analysis of permutations /". Title page, contents and abstract only, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phd191.pdf.
Texto completo da fonteLivros sobre o assunto "Permutations"
Passman, Donald S. Permutation groups. Mineola, N.Y: Dover Publications, Inc., 2012.
Encontre o texto completo da fonteTidhar, Lavie. Cloud permutations. [Hornsea]: PS Publishing, 2010.
Encontre o texto completo da fonteMaughn, James. The Arakaki permutations. United States: Black Radish Books, 2011.
Encontre o texto completo da fonteStrauss, Anselm L. Continual permutations of action. New Brunswick, N.J: AldineTransaction, 2008.
Encontre o texto completo da fonteCamina, A. R. Linear groups and permutations. Boston: Pitman Advanced Publishing Program, 1985.
Encontre o texto completo da fontePfahl, John. Permutations on the picturesque. Syracuse, NY: Robert B. Menschel Photography Gallery, Schine Student Center, Syracuse University, 1997.
Encontre o texto completo da fontePfahl, John. Permutations on the picturesque. [Syracuse, NY: Robert B. Menschel Photography Gallery, Schine Student Center, Syracuse University, 1997.
Encontre o texto completo da fonteStrauss, Anselm L. Continual permutations of action. New Brunswick, N.J: AldineTransaction, 2008.
Encontre o texto completo da fonteCamina, A. R. Linear groups and permutations. Boston: Pitman, 1985.
Encontre o texto completo da fonteKitaev, Sergey. Patterns in Permutations and Words. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17333-2.
Texto completo da fonteCapítulos de livros sobre o assunto "Permutations"
Petersen, T. Kyle. "Permutations". In Inquiry-Based Enumerative Combinatorics, 33–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18308-0_2.
Texto completo da fonteSane, Sharad S. "Permutations". In Texts and Readings in Mathematics, 39–56. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-55-2_3.
Texto completo da fonteArmstrong, M. A. "Permutations". In Undergraduate Texts in Mathematics, 26–31. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4757-4034-9_6.
Texto completo da fonteBlyth, T. S., e E. F. Robertson. "Permutations". In Sets and Mappings, 76–97. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-015-7713-7_5.
Texto completo da fonteTapp, Kristopher. "Permutations". In Symmetry, 75–86. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0299-2_6.
Texto completo da fonteEffinger, Gove, e Gary L. Mullen. "Permutations". In An Elementary Transition to Abstract Mathematics, 57–63. Boca Raton : CRC Press, Taylor … Francis Group, 2020.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429324819-10.
Texto completo da fonteJohnson, Tom, e Franck Jedrzejewski. "Permutations". In Looking at Numbers, 1–20. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0554-4_1.
Texto completo da fonteKerber, Adalbert. "Permutations". In Algorithms and Combinatorics, 275–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-11167-3_9.
Texto completo da fonteCaulton, Adam. "Permutations". In The Routledge Companion to Philosophy of Physics, 578–94. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781315623818-54.
Texto completo da fonteGolomb, Solomon W., e Andy Liu. "Permutations". In Solomon Golomb’s Course on Undergraduate Combinatorics, 149–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72228-9_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Permutations"
Galvão, Gustavo Rodrigues, e Zanoni Dias. "Algorithms for Sorting by Reversals or Transpositions, with Application to Genome Rearrangement". In XXIX Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2016.9145.
Texto completo da fonteRyabov, Vladimir Gennadievich. "On number of substitutions of vector space over finite field with affine approximations with given accuracy". In Academician O.B. Lupanov 14th International Scientific Seminar "Discrete Mathematics and Its Applications". Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/dms-2022-88.
Texto completo da fonteMatyushkin, Igor, e Pavel Rubis. "CELLULAR AUTOMATA ALGORITHMS FOR PSEUDORANDOM NUMBERS GENERATION". In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1648.silicon-2020/354-357.
Texto completo da fonteSkala, Matthew. "Counting distance permutations". In 2008 IEEE 24th International Conference on Data Engineeing workshop (ICDE Workshop 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdew.2008.4498346.
Texto completo da fonteChen, Yiling, Lance Fortnow, Evdokia Nikolova e David M. Pennock. "Betting on permutations". In the 8th ACM conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1250910.1250957.
Texto completo da fonteSkala, Matthew. "Counting Distance Permutations". In 2008 First International Workshop on Similarity Search and Applications (SISAP). IEEE, 2008. http://dx.doi.org/10.1109/sisap.2008.15.
Texto completo da fonteDomsa, Ovidiu, e Nicolae Bold. "GENERATOR OF VARIANTS OF TESTS USING THE SAME QUESTIONS". In eLSE 2016. Carol I National Defence University Publishing House, 2016. http://dx.doi.org/10.12753/2066-026x-16-174.
Texto completo da fonteMoraga, Claudio. "Permutations under Spectral Transforms". In 2008 38th International Symposium on Multiple Valued Logic (ismvl 2008). IEEE, 2008. http://dx.doi.org/10.1109/ismvl.2008.16.
Texto completo da fonteWang, Da, Arya Mazumdar e Gregory W. Wornell. "Lossy compression of permutations". In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6874785.
Texto completo da fonteSu, Lili, Farzad Farnoud e Olgica Milenkovic. "Similarity distances between permutations". In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875237.
Texto completo da fonteRelatórios de organizações sobre o assunto "Permutations"
Tovar, Benjamin, Luigi Freda e Steven M. LaValle. Learning Combinatorial Map Information from Permutations of Landmarks. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2010. http://dx.doi.org/10.21236/ada536930.
Texto completo da fonteHoran, Victoria. Overlap Cycles for Permutations: Necessary and Sufficient Conditions. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2013. http://dx.doi.org/10.21236/ada623587.
Texto completo da fonteTavare, Simon. International Conference on Random Mappings, Partitions and Permutations Held in Los Angeles, California on 3-6 January 1992. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1992. http://dx.doi.org/10.21236/ada257259.
Texto completo da fonteAlexander-Morrison, G. M. Experimental attempt to achieve microstructure variations through temperature/time permutations for a nonwrought powder metallurgy uranium-6 niobium alloy. Office of Scientific and Technical Information (OSTI), junho de 1985. http://dx.doi.org/10.2172/5791338.
Texto completo da fonteRay, Jason, James Kinnebrew, Ramsay Bell e Martin Schultz. Sensitivity of simulated flaw-height estimates to phased array scan parameters. Engineer Research and Development Center (U.S.), agosto de 2023. http://dx.doi.org/10.21079/11681/47403.
Texto completo da fonteFLORIDA STATE UNIV TALLAHASSEE. Scrambled Sobol Sequences via Permutation. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2009. http://dx.doi.org/10.21236/ada510216.
Texto completo da fonteHuang, Jonathan, Carlos Guestrin e Leonidas Guibas. Inference for Distributions over the Permutation Group. Fort Belvoir, VA: Defense Technical Information Center, maio de 2008. http://dx.doi.org/10.21236/ada488051.
Texto completo da fonteKilian, Joe, Shlomo Kipnis e Charles E. Leiserson. The Organization of Permutation Architectures with Bussed Interconnections. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1987. http://dx.doi.org/10.21236/ada208817.
Texto completo da fonteBugni, Federico A., e Joel L. Horowitz. Permutation tests for equality of distributions of functional data. The IFS, março de 2018. http://dx.doi.org/10.1920/wp.cem.2018.1818.
Texto completo da fonteDworkin, Morris J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. National Institute of Standards and Technology, julho de 2015. http://dx.doi.org/10.6028/nist.fips.202.
Texto completo da fonte