Siga este link para ver outros tipos de publicações sobre o tema: Permutation groups.

Artigos de revistas sobre o tema "Permutation groups"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Permutation groups".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Niemenmaa, Markku. "Decomposition of Transformation Groups of Permutation Machines". Fundamenta Informaticae 10, n.º 4 (1 de outubro de 1987): 363–67. http://dx.doi.org/10.3233/fi-1987-10403.

Texto completo da fonte
Resumo:
By a permutation machine we mean a triple (Q,S,F), where Q and S are finite sets and F is a function Q × S → Q which defines a permutation on Q for every element from S. These permutations generate a permutation group G and by considering the structure of G we can obtain efficient ways to decompose the transformation group (Q,G). In this paper we first consider the situation where G is half-transitive and after this we show how to use our result in the general non-transitive case.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Burns, J. M., B. Goldsmith, B. Hartley e R. Sandling. "On quasi-permutation representations of finite groups". Glasgow Mathematical Journal 36, n.º 3 (setembro de 1994): 301–8. http://dx.doi.org/10.1017/s0017089500030901.

Texto completo da fonte
Resumo:
In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bigelow, Stephen. "Supplements of bounded permutation groups". Journal of Symbolic Logic 63, n.º 1 (março de 1998): 89–102. http://dx.doi.org/10.2307/2586590.

Texto completo da fonte
Resumo:
AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise stabiliser G{Δ} acts as the full symmetric group on Ω ∖ Δ. However I have found a mistake in their proof. The aim of this paper is to examine conditions under which Macpherson and Neumann's claim holds, as well as conditions under which a counterexample can be constructed. In the process we will discover surprising links with cardinal arithmetic and Shelah's recently developed pcf theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cohen, Stephen D. "Permutation polynomials and primitive permutation groups". Archiv der Mathematik 57, n.º 5 (novembro de 1991): 417–23. http://dx.doi.org/10.1007/bf01246737.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tovstyuk, K. D., C. C. Tovstyuk e O. O. Danylevych. "The Permutation Group Theory and Electrons Interaction". International Journal of Modern Physics B 17, n.º 21 (20 de agosto de 2003): 3813–30. http://dx.doi.org/10.1142/s0217979203021812.

Texto completo da fonte
Resumo:
The new mathematical formalism for the Green's functions of interacting electrons in crystals is constructed. It is based on the theory of Green's functions and permutation groups. We constructed a new object of permutation groups, which we call double permutation (DP). DP allows one to take into consideration the symmetry of the ground state as well as energy and momentum conservation in every virtual interaction. We developed the classification of double permutations and proved the theorem, which allows the selection of classes of associated double permutations (ADP). The Green's functions are constructed for series of ADP. We separate in the DP the convolving columns by replacing the initial interaction between the particles with the effective interaction. In convoluting the series for Green's functions, we use the methods developed for permutation groups schemes of Young–Yamanuti.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Boy de la Tour, Thierry, e Mnacho Echenim. "On leaf permutative theories and occurrence permutation groups". Electronic Notes in Theoretical Computer Science 86, n.º 1 (maio de 2003): 61–75. http://dx.doi.org/10.1016/s1571-0661(04)80653-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Senashov, Vasily S., Konstantin A. Filippov e Anatoly K. Shlepkin. "Regular permutations and their applications in crystallography". E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.

Texto completo da fonte
Resumo:
The representation of a group G in the form of regular permutations is widely used for studying the structure of finite groups, in particular, parameters like the group density function. This is related to the increased potential of computer technologies for conducting calculations. The work addresses the problem of calculation regular permutations with restrictions on the structure of the degree and order of permutations. The considered regular permutations have the same nontrivial order, which divides the degree of the permutation. Examples of the application of permutation groups in crystallography and crystal chemistry are provided.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cameron, Peter J. "Cofinitary Permutation Groups". Bulletin of the London Mathematical Society 28, n.º 2 (março de 1996): 113–40. http://dx.doi.org/10.1112/blms/28.2.113.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lucchini, A., F. Menegazzo e M. Morigi. "Generating Permutation Groups". Communications in Algebra 32, n.º 5 (31 de dezembro de 2004): 1729–46. http://dx.doi.org/10.1081/agb-120029899.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kearnes, Keith A. "Collapsing permutation groups". Algebra Universalis 45, n.º 1 (1 de fevereiro de 2001): 35–51. http://dx.doi.org/10.1007/s000120050200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Gu, Yutong. "Introduction of Several Special Groups and Their Applications to Rubik’s Cube". Highlights in Science, Engineering and Technology 47 (11 de maio de 2023): 172–75. http://dx.doi.org/10.54097/hset.v47i.8186.

Texto completo da fonte
Resumo:
Group theory is the subject that aims to study the symmetries and structures of groups in mathematics. This work provides an introduction to group theory and explores some potential applications of group theory on complex geometric objects like the Rubik's cube. To this end, the concepts of symmetric group, permutation group, and cyclic group are introduced, and the famous Lagrange’s theorem and Cayley’s theorem are mentioned briefly. The former theorem establishes that a subgroup’s order must be a divisor of the parent group’s order. Concerning the permutation group, it is a set of permutations that form a group under composition. Hence, the various groups that can be formed by the Rubik's cube are discussed, including the group of all possible permutations of the cube's stickers, and the subgroups that are generated through permutations of the six basic movements embedded in Rubik’s cube. Overall, this essay provides an accessible introduction to group theory and its applications to the popular Rubik's cube.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Guralnick, Robert M., e David Perkinson. "Permutation polytopes and indecomposable elements in permutation groups". Journal of Combinatorial Theory, Series A 113, n.º 7 (outubro de 2006): 1243–56. http://dx.doi.org/10.1016/j.jcta.2005.11.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Liebeck, Martin W., e Aner Shalev. "Simple groups, permutation groups, and probability". Journal of the American Mathematical Society 12, n.º 2 (1999): 497–520. http://dx.doi.org/10.1090/s0894-0347-99-00288-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Chalapathi, T., e R. V. "Graphs of Permutation Groups". International Journal of Computer Applications 179, n.º 3 (15 de dezembro de 2017): 14–19. http://dx.doi.org/10.5120/ijca2017915872.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Burness, Timothy C., e Emily V. Hall. "Almost elusive permutation groups". Journal of Algebra 594 (março de 2022): 519–43. http://dx.doi.org/10.1016/j.jalgebra.2021.11.037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Lucchini, Andrea, Marta Morigi e Mariapia Moscatiello. "Primitive permutation IBIS groups". Journal of Combinatorial Theory, Series A 184 (novembro de 2021): 105516. http://dx.doi.org/10.1016/j.jcta.2021.105516.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Conway, John H., Alexander Hulpke e John McKay. "On Transitive Permutation Groups". LMS Journal of Computation and Mathematics 1 (1998): 1–8. http://dx.doi.org/10.1112/s1461157000000115.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Gerner, M. "Predicate-Induced Permutation Groups". Journal of Semantics 29, n.º 1 (13 de outubro de 2011): 109–44. http://dx.doi.org/10.1093/jos/ffr007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Adeleke, S. A., e Peter M. Neumann. "Infinite Bounded Permutation Groups". Journal of the London Mathematical Society 53, n.º 2 (abril de 1996): 230–42. http://dx.doi.org/10.1112/jlms/53.2.230.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

KOVÁCS, L. G., e M. F. NEWMAN. "GENERATING TRANSITIVE PERMUTATION GROUPS". Quarterly Journal of Mathematics 39, n.º 3 (1988): 361–72. http://dx.doi.org/10.1093/qmath/39.3.361.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Neumann, Peter M. "Some Primitive Permutation Groups". Proceedings of the London Mathematical Society s3-50, n.º 2 (março de 1985): 265–81. http://dx.doi.org/10.1112/plms/s3-50.2.265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Atkinson, M. D. "Permutation Involvement and Groups". Quarterly Journal of Mathematics 52, n.º 4 (1 de dezembro de 2001): 415–21. http://dx.doi.org/10.1093/qjmath/52.4.415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Cossey, John. "Quotients of permutation groups". Bulletin of the Australian Mathematical Society 57, n.º 3 (junho de 1998): 493–95. http://dx.doi.org/10.1017/s0004972700031907.

Texto completo da fonte
Resumo:
If G is a finite permutation group of degree d and N is a normal subgroup of G, Derek Holt has given conditions which show that in some important special cases the least degree of a faithful permutation representation of the quotient G/N will be no larger than d. His conditions do not apply in all cases of interest and he remarks that it would be interesting to know if G/F(G) has a faithful representation of degree no larger than d (where F(G) is the Fitting subgroup of G). We prove in this note that this is the case.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cigler, Grega. "Permutation-like matrix groups". Linear Algebra and its Applications 422, n.º 2-3 (abril de 2007): 486–505. http://dx.doi.org/10.1016/j.laa.2006.11.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Mazurov, V. D. "2-Transitive permutation groups". Siberian Mathematical Journal 31, n.º 4 (1991): 615–17. http://dx.doi.org/10.1007/bf00970632.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Galvin, Fred. "Almost disjoint permutation groups". Proceedings of the American Mathematical Society 124, n.º 6 (1996): 1723–25. http://dx.doi.org/10.1090/s0002-9939-96-03264-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Hulpke, Alexander. "Constructing transitive permutation groups". Journal of Symbolic Computation 39, n.º 1 (janeiro de 2005): 1–30. http://dx.doi.org/10.1016/j.jsc.2004.08.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Cameron, Peter J. "Cycle-closed permutation groups". Journal of Algebraic Combinatorics 5, n.º 4 (outubro de 1996): 315–22. http://dx.doi.org/10.1007/bf00193181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Grech, Mariusz. "Graphical cyclic permutation groups". Discrete Mathematics 337 (dezembro de 2014): 25–33. http://dx.doi.org/10.1016/j.disc.2014.08.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bichon, Julien. "ALGEBRAIC QUANTUM PERMUTATION GROUPS". Asian-European Journal of Mathematics 01, n.º 01 (março de 2008): 1–13. http://dx.doi.org/10.1142/s1793557108000023.

Texto completo da fonte
Resumo:
We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If 𝕂 is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra 𝕂n: this is a refinement of Wang's universality theorem for the (compact) quantum permutation group. We also prove a structural result for Hopf algebras having a non-ergodic coaction on the diagonal algebra 𝕂n, on which we determine the possible group gradings when 𝕂 is algebraically closed and has characteristic zero.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Neumann, Peter M., e Cheryl E. Praeger. "Three-star permutation groups". Illinois Journal of Mathematics 47, n.º 1-2 (março de 2003): 445–52. http://dx.doi.org/10.1215/ijm/1258488164.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kuzucuoğlu, M. "Barely transitive permutation groups". Archiv der Mathematik 55, n.º 6 (dezembro de 1990): 521–32. http://dx.doi.org/10.1007/bf01191686.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Li, Jiongsheng. "TheL-sharp permutation groups". Science in China Series A: Mathematics 43, n.º 1 (janeiro de 2000): 22–27. http://dx.doi.org/10.1007/bf02903844.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Anagnostopoulou-Merkouri, Marina, Peter J. Cameron e Enoch Suleiman. "Pre-primitive permutation groups". Journal of Algebra 636 (dezembro de 2023): 695–715. http://dx.doi.org/10.1016/j.jalgebra.2023.09.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Franchi, Clara. "Abelian sharp permutation groups". Journal of Algebra 283, n.º 1 (janeiro de 2005): 1–5. http://dx.doi.org/10.1016/j.jalgebra.2004.06.031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Khashaev, Arthur A. "On the membership problem for finite automata over symmetric groups". Discrete Mathematics and Applications 32, n.º 6 (1 de dezembro de 2022): 383–89. http://dx.doi.org/10.1515/dma-2022-0033.

Texto completo da fonte
Resumo:
Abstract We consider automata in which transitions are labelled with arbitrary permutations. The language of such an automaton consists of compositions of permutations for all possible admissible computation paths. The membership problem for finite automata over symmetric groups is the following decision problem: does a given permutation belong to the language of a given automaton? We show that this problem is NP-complete. We also propose an efficient algorithm for the case of strongly connected automata.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Vesanen, Ari. "Finite classical groups and multiplication groups of loops". Mathematical Proceedings of the Cambridge Philosophical Society 117, n.º 3 (maio de 1995): 425–29. http://dx.doi.org/10.1017/s0305004100073278.

Texto completo da fonte
Resumo:
Let Q be a loop; then the left and right translations La(x) = ax and Ra(x) = xa are permutations of Q. The permutation group M(Q) = 〈La, Ra | a ε Q〉 is called the multiplication group of Q; it is well known that the structure of M(Q) reflects strongly the structure of Q (cf. [1] and [8], for example). It is thus an interesting question, which groups can be represented as multiplication groups of loops. In particular, it seems important to classify the finite simple groups that are multiplication groups of loops. In [3] it was proved that the alternating groups An are multiplication groups of loops, whenever n ≥ 6; in this paper we consider the finite classical groups and prove the following theorems
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Pearson, Mike, e Ian Short. "Magic letter groups". Mathematical Gazette 91, n.º 522 (novembro de 2007): 493–99. http://dx.doi.org/10.1017/s0025557200182130.

Texto completo da fonte
Resumo:
Certain numeric puzzles, known as ‘magic letters’, each have a finite permutation group associated with them in a natural manner. We describe how the isomorphism type of these permutation groups relates to the structure of the magic letters.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Grech, Mariusz, e Andrzej Kisielewicz. "Cyclic Permutation Groups that are Automorphism Groups of Graphs". Graphs and Combinatorics 35, n.º 6 (13 de setembro de 2019): 1405–32. http://dx.doi.org/10.1007/s00373-019-02096-1.

Texto completo da fonte
Resumo:
Abstract In this paper we establish conditions for a permutation group generated by a single permutation to be an automorphism group of a graph. This solves the so called concrete version of König’s problem for the case of cyclic groups. We establish also similar conditions for the symmetry groups of other related structures: digraphs, supergraphs, and boolean functions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Burov, Dmitry A. "Subgroups of direct products of groups invariant under the action of permutations on factors". Discrete Mathematics and Applications 30, n.º 4 (26 de agosto de 2020): 243–55. http://dx.doi.org/10.1515/dma-2020-0021.

Texto completo da fonte
Resumo:
AbstractWe study subgroups of the direct product of two groups invariant under the action of permutations on factors. An invariance criterion for the subdirect product of two groups under the action of permutations on factors is put forward. Under certain additional constraints on permutations, we describe the subgroups of the direct product of a finite number of groups that are invariant under the action of permutations on factors. We describe the subgroups of the additive group of vector space over a finite field of characteristic 2 which are invariant under the coordinatewise action of inversion permutation of nonzero elements of the field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Gill, Nick, e Pablo Spiga. "Binary permutation groups: Alternating and classical groups". American Journal of Mathematics 142, n.º 1 (2020): 1–43. http://dx.doi.org/10.1353/ajm.2020.0000.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Banica, Teodor, Julien Bichon e Sonia Natale. "Finite quantum groups and quantum permutation groups". Advances in Mathematics 229, n.º 6 (abril de 2012): 3320–38. http://dx.doi.org/10.1016/j.aim.2012.02.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

BRYANT, R. M., L. G. KOVÁCS e G. R. ROBINSON. "TRANSITIVE PERMUTATION GROUPS AND IRREDUCIBLE LINEAR GROUPS". Quarterly Journal of Mathematics 46, n.º 4 (1995): 385–407. http://dx.doi.org/10.1093/qmath/46.4.385.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Heath-Brown, D. R., Cheryl E. Praeger e Aner Shalev. "Permutation groups, simple groups, and sieve methods". Israel Journal of Mathematics 148, n.º 1 (dezembro de 2005): 347–75. http://dx.doi.org/10.1007/bf02775443.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Bowler, Nathan, e Thomas Forster. "Normal subgroups of infinite symmetric groups, with an application to stratified set theory". Journal of Symbolic Logic 74, n.º 1 (março de 2009): 17–26. http://dx.doi.org/10.2178/jsl/1231082300.

Texto completo da fonte
Resumo:
It is generally known that infinite symmetric groups have few nontrivial normal subgroups (typically only the subgroups of bounded support) and none of small index. (We will explain later exactly what we mean by small). However the standard analysis relies heavily on the axiom of choice. By dint of a lot of combinatorics we have been able to dispense—largely—with the axiom of choice. Largely, but not entirely: our result is that if X is an infinite set with ∣X∣ = ∣X × X∣ then Symm(X) has no nontrivial normal subgroups of small index. Some condition like this is needed because of the work of Sam Tarzi who showed [4] that, for any finite group G, there is a model of ZF without AC in which there is a set X with Symm(X)/FSymm(X) isomorphic to G.The proof proceeds in two stages. We consider a particularly useful class of permutations, which we call the class of flexible permutations. A permutation of X is flexible if it fixes at least ∣X∣-many points. First we show that every normal subgroup of Symm(X) (of small index) must contain every flexible permutation. This will be theorem 4. Then we show (theorem 7) that the flexible permutations generate Symm(X).
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Praeger, Cheryl E. "Seminormal and subnormal subgroup lattices for transitive permutation groups". Journal of the Australian Mathematical Society 80, n.º 1 (fevereiro de 2006): 45–64. http://dx.doi.org/10.1017/s144678870001137x.

Texto completo da fonte
Resumo:
AbstractVarious lattices of subgroups of a finite transitive permutation group G can be used to define a set of ‘basic’ permutation groups associated with G that are analogues of composition factors for abstract finite groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic permutation groups. The basic permutation groups corresponding to the lattice L of all subgroups of G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new subgroup lattices contained in L, called the seminormal subgroup lattice and the subnormal subgroup lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups, respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

., Haci Aktas. "On Finite Topological Permutation Groups". Journal of Applied Sciences 2, n.º 1 (15 de dezembro de 2001): 60–61. http://dx.doi.org/10.3923/jas.2002.60.61.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Jones, Gareth. "Combinatorial categories and permutation groups". Ars Mathematica Contemporanea 10, n.º 2 (20 de outubro de 2015): 237–54. http://dx.doi.org/10.26493/1855-3974.545.fd5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Neumann, Peter M. "Homogeneity of Infinite Permutation Groups". Bulletin of the London Mathematical Society 20, n.º 4 (julho de 1988): 305–12. http://dx.doi.org/10.1112/blms/20.4.305.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Birszki, Bálint. "ON PRIMITIVE SHARP PERMUTATION GROUPS". Communications in Algebra 30, n.º 6 (19 de junho de 2002): 3013–23. http://dx.doi.org/10.1081/agb-120004005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia