Artigos de revistas sobre o tema "Periodic and quasi-Periodic media"

Siga este link para ver outros tipos de publicações sobre o tema: Periodic and quasi-Periodic media.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Periodic and quasi-Periodic media".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Su, Xifeng, e Rafael de la Llave. "KAM Theory for Quasi-periodic Equilibria in One-Dimensional Quasi-periodic Media". SIAM Journal on Mathematical Analysis 44, n.º 6 (janeiro de 2012): 3901–27. http://dx.doi.org/10.1137/12087160x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Pang, Gen-Di. "Optical properties of quasi-periodic media". Journal of Physics C: Solid State Physics 21, n.º 31 (10 de novembro de 1988): 5455–63. http://dx.doi.org/10.1088/0022-3719/21/31/016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sinai, Yakov G. "Anomalous transport in quasi-periodic media". Russian Mathematical Surveys 54, n.º 1 (28 de fevereiro de 1999): 181–208. http://dx.doi.org/10.1070/rm1999v054n01abeh000120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Su, Xifeng, e Rafael de la Llave. "KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions". Journal of Physics A: Mathematical and Theoretical 45, n.º 45 (19 de outubro de 2012): 455203. http://dx.doi.org/10.1088/1751-8113/45/45/455203.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kimura, S., G. Schubert e J. M. Straus. "Instabilities of Steady, Periodic, and Quasi-Periodic Modes of Convection in Porous Media". Journal of Heat Transfer 109, n.º 2 (1 de maio de 1987): 350–55. http://dx.doi.org/10.1115/1.3248087.

Texto completo da fonte
Resumo:
Instabilities of steady and time-dependent thermal convection in a fluid-saturated porous medium heated from below have been studied using linear perturbation theory. The stability of steady-state solutions of the governing equations (obtained numerically) has been analyzed by evaluating the eigenvalues of the linearized system of equations describing the temporal behavior of infinitesimal perturbations. Using this procedure, we have found that time-dependent convection in a square cell sets in at Rayleigh number Ra=390. The temporal frequency of the simply periodic (P(1)) convection at Rayleigh numbers exceeding this value is given by the imaginary part of the complex eigenvalue. The stability of this (P(1)) state has also been studied; transition to quasi-periodic convection (QP2) occurs at Ra ≈ 510. A reverse transition to a simply periodic state (P(2)) occurs at Ra ≈ 560; a slight jump in the frequency of the P(2) state occurs at Ra between 625 and 640. The jump coincides with a second narrow (in terms of Ra) region of quasi-periodicity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

de la Llave, Rafael, Xifeng Su e Lei Zhang. "Resonant Equilibrium Configurations in Quasi-Periodic Media: KAM Theory". SIAM Journal on Mathematical Analysis 49, n.º 1 (janeiro de 2017): 597–625. http://dx.doi.org/10.1137/15m1048598.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

de la Llave, Rafael, Xifeng Su e Lei Zhang. "Resonant Equilibrium Configurations in Quasi-periodic Media: Perturbative Expansions". Journal of Statistical Physics 162, n.º 6 (8 de fevereiro de 2016): 1522–38. http://dx.doi.org/10.1007/s10955-016-1464-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Gao, Yixian, Weipeng Zhang e Shuguan Ji. "Quasi-Periodic Solutions of Nonlinear Wave Equation with x-Dependent Coefficients". International Journal of Bifurcation and Chaos 25, n.º 03 (março de 2015): 1550043. http://dx.doi.org/10.1142/s0218127415500431.

Texto completo da fonte
Resumo:
This paper is devoted to the study of quasi-periodic solutions of a nonlinear wave equation with x-dependent coefficients. Such a model arises from the forced vibration of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. Based on the partial Birkhoff normal form and an infinite-dimensional KAM theorem, we can obtain the existence of quasi-periodic solutions for this model under the general boundary conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Pang, Gen-Di, e Fu-Cho Pu. "Non-linear optical effects in quasi-periodic multi-layered media". Journal of Physics C: Solid State Physics 21, n.º 22 (10 de agosto de 1988): L853—L856. http://dx.doi.org/10.1088/0022-3719/21/22/014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ben-Messaoud, Tahar, Jason Riordon, Alexandre Melanson, P. V. Ashrit e Alain Haché. "Photoactive periodic media". Applied Physics Letters 94, n.º 11 (16 de março de 2009): 111904. http://dx.doi.org/10.1063/1.3095478.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Chulaevsky, Victor. "The KAM approach to the localization in “haarsch” quasi-periodic media". Journal of Mathematical Physics 59, n.º 1 (janeiro de 2018): 013509. http://dx.doi.org/10.1063/1.4995024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Cluni, F., e V. Gusella. "Estimation of residuals for the homogenized solution of quasi-periodic media". Probabilistic Engineering Mechanics 54 (outubro de 2018): 110–17. http://dx.doi.org/10.1016/j.probengmech.2017.09.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Werner, P. "Resonances in periodic media". Mathematical Methods in the Applied Sciences 14, n.º 4 (maio de 1991): 227–63. http://dx.doi.org/10.1002/mma.1670140403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Ayoul-Guilmard, Quentin, Anthony Nouy e Christophe Binetruy. "Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media". ESAIM: Mathematical Modelling and Numerical Analysis 52, n.º 3 (maio de 2018): 869–91. http://dx.doi.org/10.1051/m2an/2018022.

Texto completo da fonte
Resumo:
This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain D such that D̅ is the union of cells {D̅i}i∈I and we introduce a two-scale representation by identifying any function v(x) defined on D with a bi-variate function v(i,y), where i ∈ I relates to the index of the cell containing the point x and y ∈ Y relates to a local coordinate in a reference cell Y. We introduce a weak formulation of the problem in a broken Sobolev space V(D) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V(D) with a tensor product space ℝI⊗ V(Y) of functions defined over the product set I × Y. Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Gorshkov, A. S., e K. I. Volyak. "The Interaction Video Pulses and Quasi-Harmonic Signals in Periodic Nonlinear Media". Japanese Journal of Applied Physics 34, Part 1, No. 9A (15 de setembro de 1995): 5070–75. http://dx.doi.org/10.1143/jjap.34.5070.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Krejčí, Pavel. "Periodic solutions to Maxwell equations in nonlinear media". Czechoslovak Mathematical Journal 36, n.º 2 (1986): 238–58. http://dx.doi.org/10.21136/cmj.1986.102088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Kuznetsov, Sergey V. "Fundamental Solutions for Periodic Media". Advances in Mathematical Physics 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/473068.

Texto completo da fonte
Resumo:
Necessity for the periodic fundamental solutions arises when the periodic boundary value problems should be analyzed. The latter are naturally related to problems of finding the homogenized properties of the dispersed composites, porous media, and media with uniformly distributed microcracks or dislocations. Construction of the periodic fundamental solutions is done in terms of the convergent series in harmonic polynomials. An example of the periodic fundamental solution for the anisotropic porous medium is constructed, along with the simplified lower bound estimate.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Alcocer, F. J., V. Kumar e P. Singh. "Permeability of periodic porous media". Physical Review E 59, n.º 1 (1 de janeiro de 1999): 711–14. http://dx.doi.org/10.1103/physreve.59.711.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Griffiths, David J., e Carl A. Steinke. "Waves in locally periodic media". American Journal of Physics 69, n.º 2 (fevereiro de 2001): 137–54. http://dx.doi.org/10.1119/1.1308266.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Haché, Alain, Mohit Malik, Marcus Diem, Lasha Tkeshelashvili e Kurt Busch. "Measuring randomness with periodic media". Photonics and Nanostructures - Fundamentals and Applications 5, n.º 1 (fevereiro de 2007): 29–36. http://dx.doi.org/10.1016/j.photonics.2006.11.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Molotkov, L. A., e A. E. Khilo. "Averaging periodic, nonideal elastic media". Journal of Soviet Mathematics 32, n.º 2 (janeiro de 1986): 186–92. http://dx.doi.org/10.1007/bf01084156.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Blank, Carsten, Martina Chirilus-Bruckner, Vincent Lescarret e Guido Schneider. "Breather Solutions in Periodic Media". Communications in Mathematical Physics 302, n.º 3 (1 de fevereiro de 2011): 815–41. http://dx.doi.org/10.1007/s00220-011-1191-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Sab, K., e F. Pradel. "Homogenisation of periodic Cosserat media". International Journal of Computer Applications in Technology 34, n.º 1 (2009): 60. http://dx.doi.org/10.1504/ijcat.2009.022703.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Manela, Ofer, Mordechai Segev e Demetrios N. Christodoulides. "Nondiffracting beams in periodic media". Optics Letters 30, n.º 19 (1 de outubro de 2005): 2611. http://dx.doi.org/10.1364/ol.30.002611.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Caffarelli, Luis A., e Rafael de la Llave. "Planelike minimizers in periodic media". Communications on Pure and Applied Mathematics 54, n.º 12 (2001): 1403–41. http://dx.doi.org/10.1002/cpa.10008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Mikaeeli, Ameneh, Alireza Keshavarz, Ali Baseri e Michal Pawlak. "Controlling Thermal Radiation in Photonic Quasicrystals Containing Epsilon-Negative Metamaterials". Applied Sciences 13, n.º 23 (4 de dezembro de 2023): 12947. http://dx.doi.org/10.3390/app132312947.

Texto completo da fonte
Resumo:
The transfer matrix approach is used to study the optical characteristics of thermal radiation in a one-dimensional photonic crystal (1DPC) with metamaterial. In this method, every layer within the multilayer structure is associated with its specific transfer matrix. Subsequently, it links the incident beam to the next layer from the previous layer. The proposed structure is composed of three types of materials, namely InSb, ZrO2, and Teflon, and one type of epsilon-negative (ENG) metamaterial and is organized in accordance with the laws of sequencing. The semiconductor InSb has the capability to adjust bandgaps by utilizing its thermally responsive permittivity, allowing for tunability with temperature changes, while the metamaterial modifies the bandgaps according to its negative permittivity. Using quasi-periodic shows that, in contrast to employing absolute periodic arrangements, it produces more diverse results in modifying the structure’s band-gaps. Using a new sequence arrangement mixed-quasi-periodic (MQP) structure, which is a combination of two quasi periodic structures, provides more freedom of action for modifying the properties of the medium than periodic arrangements do. The ability to control thermal radiation is crucial in a range of optical applications since it is frequently unpolarized and incoherent in both space and time. These configurations allow for the suppression and emission of thermal radiation in a certain frequency range due to their fundamental nature as photonic band-gaps (PBGs). So, we are able to control the thermal radiation by changing the structure arrangement. Here, the We use an indirect method based on the second Kirchoff law for thermal radiation to investigate the emittance of black bodies based on a well-known transfer matrix technique. We can measure the transmission and reflection coefficients with associated transmittance and reflectance, T and R, respectively. Here, the effects of several parameters, including the input beam’s angle, polarization, and period on tailoring the thermal radiation spectrum of the proposed structure, are studied. The results show that in some frequency bands, thermal radiation exceeded the black body limit. There were also good results in terms of complete stop bands for both TE and TM polarization at different incident angles and frequencies. This study produces encouraging results for the creation of Terahertz (THz) filters and selective thermal emitters. The tunability of our media is a crucial factor that influences the efficiency and function of our desired photonic outcome. Therefore, exploiting MQP sequences or arrangements is a promising strategy, as it allows us to rearrange our media more flexibly than quasi-periodic sequences and thus achieve our optimal result.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Eberhard, J. P., N. Suciu e C. Vamoş. "On the self-averaging of dispersion for transport in quasi-periodic random media". Journal of Physics A: Mathematical and Theoretical 40, n.º 4 (9 de janeiro de 2007): 597–610. http://dx.doi.org/10.1088/1751-8113/40/4/002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Danilenko, V. A., e S. I. Skurativskyy. "Invariant chaotic and quasi-periodic solutions of nonlinear nonlocal models of relaxing media". Reports on Mathematical Physics 59, n.º 1 (fevereiro de 2007): 45–51. http://dx.doi.org/10.1016/s0034-4877(07)80003-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Parnell, W. J., e I. D. Abrahams. "Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves". Wave Motion 43, n.º 6 (junho de 2006): 474–98. http://dx.doi.org/10.1016/j.wavemoti.2006.03.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Blass, Timothy, e Rafael de la Llave. "The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media: Numerical Explorations". Journal of Statistical Physics 150, n.º 6 (20 de fevereiro de 2013): 1183–200. http://dx.doi.org/10.1007/s10955-013-0718-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Topolnikov, A. S. "Argumentation of Application if Quasi-Stationary Model to Describe the Periodic Regime of Oil Well". Proceedings of the Mavlyutov Institute of Mechanics 12, n.º 1 (2017): 15–26. http://dx.doi.org/10.21662/uim2017.1.003.

Texto completo da fonte
Resumo:
In the paper the argumentation of application of quasi-stationary model of gas-liquid flow is presented to describe periodic regime of oil well operating. It is shown that this simplification actually does not affect the solution accuracy, but allows to essentially diminish the calculating time. In view of the considered problem specification the transition from non-stationary model of media to the quasi-stationary model greatly increases the computational speed, which is the necessary condition for execution the optimization calculations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

LEVENSON, J. A., e P. VIDAKOVIC. "QUANTUM NOISE REDUCTION IN TRAVELLING-WAVE QUASI-PHASE-MATCHED SECOND HARMONIC GENERATION". Journal of Nonlinear Optical Physics & Materials 05, n.º 04 (outubro de 1996): 879–98. http://dx.doi.org/10.1142/s0218863596000623.

Texto completo da fonte
Resumo:
The present calculation on squeezing capabilities of quadratic nonlinear media in which the phase matching condition is achieved artificially by a periodic poling of the nonlinear susceptibility shows that interesting performance can be obtained for highly integrable and nonlinear materials, using technologies already developed. The origin of squeezing in quasi-phase matched (QPM) media is the cascading of two second order nonlinearities, which at small second harmonic conversion rates has properties similar to a more familiar, purely third order nonlinear effect—Kerr effect.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Lipton, Robert, e Robert Viator Jr. "Creating Band Gaps in Periodic Media". Multiscale Modeling & Simulation 15, n.º 4 (janeiro de 2017): 1612–50. http://dx.doi.org/10.1137/16m1083396.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Carlsson, N., A. Mahanti, Zongpeng Li e D. Eager. "Optimized Periodic Broadcast of Nonlinear Media". IEEE Transactions on Multimedia 10, n.º 5 (agosto de 2008): 871–84. http://dx.doi.org/10.1109/tmm.2008.922847.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Delyon, François, Yves-Emmanuel Lévy e Bernard Souillard. "Nonperturbative Bistability in Periodic Nonlinear Media". Physical Review Letters 57, n.º 16 (20 de outubro de 1986): 2010–13. http://dx.doi.org/10.1103/physrevlett.57.2010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Liao, Shih-Gang, e Chin-Chin Wu. "Propagation failure in discrete periodic media". Journal of Difference Equations and Applications 19, n.º 8 (agosto de 2013): 1268–75. http://dx.doi.org/10.1080/10236198.2012.739169.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Conca, Carlos, Rafael Orive e Muthusamy Vanninathan. "On Burnett coefficients in periodic media". Journal of Mathematical Physics 47, n.º 3 (março de 2006): 032902. http://dx.doi.org/10.1063/1.2179048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Hizi, Uzi, e David J. Bergman. "Molecular diffusion in periodic porous media". Journal of Applied Physics 87, n.º 4 (15 de fevereiro de 2000): 1704–11. http://dx.doi.org/10.1063/1.372081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Frankel, Michael, e Victor Roytburd. "Dynamics of SHS in periodic media". Nonlinear Analysis: Theory, Methods & Applications 63, n.º 5-7 (novembro de 2005): e1507-e1515. http://dx.doi.org/10.1016/j.na.2005.01.046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Bankov, S. E. "Electrodynamics of Inhomogeneous 2D Periodic Media". Journal of Communications Technology and Electronics 64, n.º 11 (novembro de 2019): 1159–69. http://dx.doi.org/10.1134/s1064226919110044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Saeger, R. B., L. E. Scriven e H. T. Davis. "Transport processes in periodic porous media". Journal of Fluid Mechanics 299 (25 de setembro de 1995): 1–15. http://dx.doi.org/10.1017/s0022112095003399.

Texto completo da fonte
Resumo:
The Stokes equation system and Ohm's law were solved numerically for fluid in periodic bicontinuous porous media of simple cubic (SC), body-centred cubic (BCC) and face-centred cubic (FCC) symmetry. The Stokes equation system was also solved for fluid in porous media of SC arrays of disjoint spheres. The equations were solved by Galerkin's method with finite element basis functions and with elliptic grid generation. The Darcy permeability k computed for flow through SC arrays of spheres is in excellent agreement with predictions made by other authors. Prominent recirculation patterns are found for Stokes flow in bicontinuous porous media. The results of the analysis of Stokes flow and Ohmic conduction through bicontinuous porous media were used to test the permeability scaling law proposed by Johnson, Koplik & Schwartz (1986), which introduces a length parameter Λ to relate Darcy permeability k and the formation factor F. As reported in our earlier work on the SC bicontinuous porous media, the scaling law holds approximately for the BCC and FCC families except when the porespace becomes nearly spherical pores connected by small orifice-like passages. We also found that, except when the porespace was connected by the small orifice-like passages, the permeability versus porosity curve of the bicontinuous media agrees very well with that of arrays of disjoint and fused spheres of the same crystallographic symmetry.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Claes, I., e C. Van den Broeck. "Dispersion of particles in periodic media". Journal of Statistical Physics 70, n.º 5-6 (março de 1993): 1215–31. http://dx.doi.org/10.1007/bf01049429.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Molotkov, L. A., e A. E. Khilo. "Effective media for periodic anisotropic systems". Journal of Soviet Mathematics 30, n.º 5 (setembro de 1985): 2445–50. http://dx.doi.org/10.1007/bf02107408.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Drouot, A., C. L. Fefferman e M. I. Weinstein. "Defect Modes for Dislocated Periodic Media". Communications in Mathematical Physics 377, n.º 3 (19 de junho de 2020): 1637–80. http://dx.doi.org/10.1007/s00220-020-03787-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Blonskyi, I., V. Kadan, Y. Shynkarenko, O. Yarusevych, P. Korenyuk, V. Puzikov e L. Grin’. "Periodic femtosecond filamentation in birefringent media". Applied Physics B 120, n.º 4 (7 de agosto de 2015): 705–10. http://dx.doi.org/10.1007/s00340-015-6186-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Kaminer, Ido, Carmel Rotschild, Ofer Manela e Mordechai Segev. "Periodic solitons in nonlocal nonlinear media". Optics Letters 32, n.º 21 (29 de outubro de 2007): 3209. http://dx.doi.org/10.1364/ol.32.003209.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Craster, R. V., J. Kaplunov e A. V. Pichugin. "High-frequency homogenization for periodic media". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, n.º 2120 (10 de março de 2010): 2341–62. http://dx.doi.org/10.1098/rspa.2009.0612.

Texto completo da fonte
Resumo:
An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Bulgakov, A. A., S. A. Bulgakov e M. Nieto-Vesperinas. "Complex polaritons in periodic layered media". Physical Review B 52, n.º 15 (15 de outubro de 1995): 10788–91. http://dx.doi.org/10.1103/physrevb.52.10788.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

de Sterke, C. Martijn. "Stability analysis of nonlinear periodic media". Physical Review A 45, n.º 11 (1 de junho de 1992): 8252–58. http://dx.doi.org/10.1103/physreva.45.8252.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Ketcheson, David I., e Randall J. Leveque. "Shock dynamics in layered periodic media". Communications in Mathematical Sciences 10, n.º 3 (2012): 859–74. http://dx.doi.org/10.4310/cms.2012.v10.n3.a7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia