Siga este link para ver outros tipos de publicações sobre o tema: Perceptual stability.

Artigos de revistas sobre o tema "Perceptual stability"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Perceptual stability".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Barnes, Dylan C., Rylon D. Hofacer, Ashiq R. Zaman, Robert L. Rennaker e Donald A. Wilson. "Olfactory perceptual stability and discrimination". Nature Neuroscience 11, n.º 12 (2 de novembro de 2008): 1378–80. http://dx.doi.org/10.1038/nn.2217.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zhang, Kathy, Alina Liberman e David Whitney. "Perceptual stability without working memory". Journal of Vision 16, n.º 12 (1 de setembro de 2016): 1078. http://dx.doi.org/10.1167/16.12.1078.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Zusne, Leonard. "Visual Figure-Ground and Perceptual Stability". Perceptual and Motor Skills 77, n.º 2 (outubro de 1993): 564–66. http://dx.doi.org/10.2466/pms.1993.77.2.564.

Texto completo da fonte
Resumo:
A conceptual model that relates all forms of multistable figures is presented. It has the form of a tetrahedron whose faces and edges represent the variables of information contained in the ground, in the figure-ground relationship, in the extent of organization of the ground, and meaningfulness.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Abadi, Richard V., e Janus J. Kulikowski. "Perceptual Stability—Going with the Flow". Perception 37, n.º 9 (janeiro de 2008): 1461–63. http://dx.doi.org/10.1068/p5937.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Han, Chao, Teng-Leng Ooi e Zijiang He. "Perceptual surface completion and surface stability". Journal of Vision 17, n.º 10 (31 de agosto de 2017): 1369. http://dx.doi.org/10.1167/17.10.1369.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rubin, N. "Binocular rivalry and perceptual multi-stability". Trends in Neurosciences 26, n.º 6 (junho de 2003): 289–91. http://dx.doi.org/10.1016/s0166-2236(03)00128-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Balter, Leonie J. T., Granville J. Matheson, Tina Sundelin, Philipp Sterzer, Predrag Petrovic e John Axelsson. "Experimental Sleep Deprivation Results in Diminished Perceptual Stability Independently of Psychosis Proneness". Brain Sciences 12, n.º 10 (3 de outubro de 2022): 1338. http://dx.doi.org/10.3390/brainsci12101338.

Texto completo da fonte
Resumo:
Psychotic disorders as well as psychosis proneness in the general population have been associated with perceptual instability, suggesting weakened predictive processing. Sleep disturbances play a prominent role in psychosis and schizophrenia, but it is unclear whether perceptual stability diminishes with sleep deprivation, and whether the effects of sleep deprivation differ as a function of psychosis proneness. In the current study, we aimed to clarify this matter. In this preregistered study, 146 participants successfully completed an intermittent version of the random dot kinematogram (RDK) task and the 21-item Peters Delusion Inventory (PDI-21) to assess perceptual stability and psychosis proneness, respectively. Participants were randomized to sleep either as normal (8 to 9 hours in bed) (n = 72; Mage = 24.7, SD = 6.2, 41 women) or to stay awake through the night (n = 74; Mage = 24.8, SD = 5.1, 44 women). Sleep deprivation resulted in diminished perceptual stability, as well as in decreases in perceptual stability over the course of the task. However, we did not observe any association between perceptual stability and PDI-21 scores, nor a tendency for individuals with higher PDI-21 scores to be more vulnerable to sleep-deprivation-induced decreases in perceptual stability. The present study suggests a compromised predictive processing system in the brain after sleep deprivation, but variation in psychosis trait is not related to greater vulnerability to sleep deprivation in our dataset. Further studies in risk groups and patients with psychosis are needed to evaluate whether sleep loss plays a role in the occurrence of objectively measured perceptual-related clinical symptoms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Einhauser, W., J. Stout, C. Koch e O. Carter. "Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry". Proceedings of the National Academy of Sciences 105, n.º 5 (4 de fevereiro de 2008): 1704–9. http://dx.doi.org/10.1073/pnas.0707727105.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

OKADA, Masaaki, e Takeshi SUZUKI. "Study on Perceptual Stability of Coastal Landscape". INFRASTRUCTURE PLANNING REVIEW 20 (2003): 379–84. http://dx.doi.org/10.2208/journalip.20.379.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Riani, Massimo, Maria Teresa Tuccio, Antonio Borsellino, Jirina Radilová e Tomas Radil. "Perceptual Ambiguity and Stability of Reversible Figures". Perceptual and Motor Skills 63, n.º 1 (agosto de 1986): 191–205. http://dx.doi.org/10.2466/pms.1986.63.1.191.

Texto completo da fonte
Resumo:
In this work, the results of two experiments on ambiguous patterns are reported, which have been obtained by presenting a series of stimuli designed, in both cases, to reduce gradually the ambiguity of the patterns. Such reduction has been performed by respectively increasing or decreasing the amount of graphic details in the experiments. Data of both experiments show a lengthening of mean reversal time. The increase in the stability of one percept can be regarded as associated with the increasing difficulties encountered by an observer in organizing and restating the alternative “hypochesis” through the perceptual mechanisms. The loss of balance in the durations of percepts is discussed in terms of their different informational contents. Finally, in Exp. 1 an analysis is made to evaluate to what extent an addition of perceptual cues, designed to reinforce a three-dimensional interpretation of a pattern, can influence its figure-ground alternation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Eisner, Frank, e James M. McQueen. "Perceptual learning in speech: Stability over time". Journal of the Acoustical Society of America 119, n.º 4 (abril de 2006): 1950–53. http://dx.doi.org/10.1121/1.2178721.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Denham, Susan, Alexandra Bendixen, Robert Mill, Dénes Tóth, Thomas Wennekers, Martin Coath, Tamás Bőhm, Orsolya Szalardy e István Winkler. "Characterising switching behaviour in perceptual multi-stability". Journal of Neuroscience Methods 210, n.º 1 (setembro de 2012): 79–92. http://dx.doi.org/10.1016/j.jneumeth.2012.04.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Suzuki, S. "Response: Binocular rivalry and perceptual multi-stability". Trends in Neurosciences 26, n.º 6 (junho de 2003): 287–89. http://dx.doi.org/10.1016/s0166-2236(03)00127-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Zimmermann, Eckart, e Frank Bremmer. "Visual Neuroscience: The Puzzle of Perceptual Stability". Current Biology 26, n.º 5 (março de 2016): R199—R201. http://dx.doi.org/10.1016/j.cub.2016.01.050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Hadmi, Azhar, e Awatif Rouijel. "A Novel Approach for Robust Perceptual Image Hashing". Computer and Information Science 14, n.º 3 (5 de julho de 2021): 38. http://dx.doi.org/10.5539/cis.v14n3p38.

Texto completo da fonte
Resumo:
Perceptual image hashing system generates a short signature called perceptual hash attached to an image before transmission and acts as side information for analyzing the trustworthiness of the received image. In this paper, we propose a novel approach to improve robustness for perceptual image hashing scheme for generating a perceptual hash that should be resistant to content-preserving manipulations, such as JPEG compression and Additive white Gaussian noise (AWGN) also should differentiate the maliciously tampered image and its original version. Our algorithm first constructs a robust image, derived from the original input by analyzing the stability of the extracted features and improving their robustness. From the robust image, which does perceptually resemble the original input, we further extract the final robust features. Next, robust features are suitably quantized allowing the generation of the final perceptual hash using the cryptographic hash function SHA1. The main idea of this paper is to transform the original image into a more robust one that allows the extraction of robust features. Generation of the robust image turns out be quite important since it introduces further robustness to the perceptual image hashing system. The paper can be seen as an attempt to propose a general methodology for more robust perceptual image hashing. The experimental results presented in this paper reveal that the proposed scheme offers good robustness against JPEG compression and Additive white Gaussian noise.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Weilnhammer, Veith, Lukas Röd, Anna-Lena Eckert, Heiner Stuke, Andreas Heinz e Philipp Sterzer. "Psychotic Experiences in Schizophrenia and Sensitivity to Sensory Evidence". Schizophrenia Bulletin 46, n.º 4 (24 de fevereiro de 2020): 927–36. http://dx.doi.org/10.1093/schbul/sbaa003.

Texto completo da fonte
Resumo:
Abstract Perceptual inference depends on an optimal integration of current sensory evidence with prior beliefs about the environment. Alterations of this process have been related to the emergence of positive symptoms in schizophrenia. However, it has remained unclear whether delusions and hallucinations arise from an increased or decreased weighting of prior beliefs relative to sensory evidence. To investigate the relation of this prior-to-likelihood ratio to positive symptoms in schizophrenia, we devised a novel experimental paradigm which gradually manipulates perceptually ambiguous visual stimuli by disambiguating stimulus information. As a proxy for likelihood precision, we assessed the sensitivity of individual participants to sensory evidence. As a surrogate for the precision of prior beliefs in perceptual stability, we measured phase duration in ambiguity. Relative to healthy controls, patients with schizophrenia showed a stronger increment in congruent perceptual states for increasing levels of disambiguating stimulus evidence. Sensitivity to sensory evidence correlated positively with the individual patients’ severity of perceptual anomalies and hallucinations. Moreover, the severity of such experiences correlated negatively with phase duration. Our results indicate that perceptual anomalies and hallucinations are associated with a shift of perceptual inference toward sensory evidence and away from prior beliefs. This reduced prior-to-likelihood ratio in sensory processing may contribute to the phenomenon of aberrant salience, which has been suggested to give rise to the false inferences underlying psychotic experiences.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Cooper, Natalia, Iain Cant, Mark D. White e Georg F. Meyer. "Perceptual assessment of environmental stability modulates postural sway". PLOS ONE 13, n.º 11 (9 de novembro de 2018): e0206218. http://dx.doi.org/10.1371/journal.pone.0206218.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Oyama, Tadasu. "Apparent Motion as an Example of Perceptual Stability". Perception 26, n.º 5 (maio de 1997): 547–51. http://dx.doi.org/10.1068/p260547.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Obeidi, A., D. M. Kilgour e K. W. Hipel. "Perceptual Stability Analysis of a Graph Model System". IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 39, n.º 5 (setembro de 2009): 993–1006. http://dx.doi.org/10.1109/tsmca.2009.2020686.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Dicke, Peter W., Subhojit Chakraborty e Peter Thier. "Neuronal correlates of perceptual stability during eye movements". European Journal of Neuroscience 27, n.º 4 (fevereiro de 2008): 991–1002. http://dx.doi.org/10.1111/j.1460-9568.2008.06054.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Warren, Christopher M., Sander Nieuwenhuis e Tobias H. Donner. "Perceptual choice boosts network stability: effect of neuromodulation?" Trends in Cognitive Sciences 19, n.º 7 (julho de 2015): 362–64. http://dx.doi.org/10.1016/j.tics.2015.05.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Basgöze, Zeynep, David N. White, Johannes Burge e Emily A. Cooper. "Natural statistics of depth edges modulate perceptual stability". Journal of Vision 20, n.º 8 (6 de agosto de 2020): 10. http://dx.doi.org/10.1167/jov.20.8.10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Watson, Tamara L., e Bart Krekelberg. "The Relationship between Saccadic Suppression and Perceptual Stability". Current Biology 19, n.º 12 (junho de 2009): 1040–43. http://dx.doi.org/10.1016/j.cub.2009.04.052.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Thier, Peter, Thomas Haarmeier, Subhojit Chakraborty, Axel Lindner e Alexander Tikhonov. "Cortical Substrates of Perceptual Stability during Eye Movements". NeuroImage 14, n.º 1 (julho de 2001): S33—S39. http://dx.doi.org/10.1006/nimg.2001.0840.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Casartelli, Luca. "Stability and flexibility in multisensory sampling: insights from perceptual illusions". Journal of Neurophysiology 121, n.º 5 (1 de maio de 2019): 1588–90. http://dx.doi.org/10.1152/jn.00060.2019.

Texto completo da fonte
Resumo:
Neural, oscillatory, and computational counterparts of multisensory processing remain a crucial challenge for neuroscientists. Converging evidence underlines a certain efficiency in balancing stability and flexibility of sensory sampling, supporting the general idea that multiple parallel and hierarchically organized processing stages in the brain contribute to our understanding of the (sensory/perceptual) world. Intriguingly, how temporal dynamics impact and modulate multisensory processes in our brain can be investigated benefiting from studies on perceptual illusions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hodges, Emma C., Shawn N. Cummings e Rachel M. Theodore. "Easy come, easy go: Examining the stability of lexically guided perceptual learning over time". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de março de 2023): A343. http://dx.doi.org/10.1121/10.0019092.

Texto completo da fonte
Resumo:
Listeners can use lexical information to accommodate ambiguity in speech input. Some evidence suggest that lexically guided perceptual learning persists over time. However, other evidence suggests that lexically guided perceptual learning attenuates throughout the test session, consistent with distributional learning that occurs given exposure to the test stimuli. Here we test the hypothesis that lexically guided and distributional learning may operate over different time scales. During exposure, listeners heard spectral energy ambiguous between /ʃ/ and /s/ in a lexically-biasing context. At test, listeners categorized tokens from an ashi-asi continuum. Test duration was manipulated between subjects to be either brief or long. Approximately 24 hours later, both groups completed a second test phase. The results to date show (1) robust lexically guided perceptual learning at the first test, (2) attenuation of learning for the long duration compared to the short duration test group at the first test, and (3) no robust evidence of lexically guided perceptual learning for either group at the second test. If these results hold in the full sample to be tested, then they would suggest that lexically guided perceptual learning is best characterized as dynamic adaption to recent input that dissipates within a day.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Jaekl, P., M. Jenkin e L. R. Harris. "Perceptual stability during active head movements orthogonal and parallel to gravity". Journal of Vestibular Research 13, n.º 4-6 (28 de dezembro de 2003): 265–71. http://dx.doi.org/10.3233/ves-2003-134-611.

Texto completo da fonte
Resumo:
We measured how much the visual world could be moved during various head rotations and translations and still be perceived as visually stable. Using this as a monitor of how well subjects know about their own movement, we compared performance in different directions relative to gravity. For head rotations, we compared the range of visual motion judged compatible with a stable environment while rotating around an axis orthogonal to gravity (where rotation created a rotating gravity vector across the otolith macula), with judgements made when rotation was around an earth-vertical axis. For translations, we compared the corresponding range of visual motion when translation was parallel to gravity (when imposed accelerations added to or subtracted from gravity), with translations orthogonal to gravity. Ten subjects wore a head-mounted display and made active head movements at 0.5 Hz that were monitored by a low-latency mechanical tracker. Subjects adjusted the ratio between head and image motion until the display appeared perceptually stable. For neither rotation nor translation were there any differences in judgements of perceptual stability that depended on the direction of the movement with respect to the direction of gravity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Schmack, Katharina, Maria Sekutowicz, Hannes Rössler, Eva J. Brandl, Daniel J. Müller e Philipp Sterzer. "The influence of dopamine-related genes on perceptual stability". European Journal of Neuroscience 38, n.º 9 (22 de agosto de 2013): 3378–83. http://dx.doi.org/10.1111/ejn.12339.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ostendorf, F., D. Liebermann e C. J. Ploner. "Human thalamus contributes to perceptual stability across eye movements". Proceedings of the National Academy of Sciences 107, n.º 3 (28 de dezembro de 2009): 1229–34. http://dx.doi.org/10.1073/pnas.0910742107.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Tcheang, L., A. Glennerster, S. J. Gilson e A. J. Parker. "Systematic distortions of perceptual stability investigated using virtual reality". Journal of Vision 3, n.º 9 (16 de março de 2010): 497. http://dx.doi.org/10.1167/3.9.497.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

van Ee, R., L. C. J. van Dam e G. J. Brouwer. "Voluntary control and the dynamics of perceptual bi-stability". Vision Research 45, n.º 1 (janeiro de 2005): 41–55. http://dx.doi.org/10.1016/j.visres.2004.07.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Yeon, Sang‐hee, Ratree Wayland, James Harnsberger e Jenna Silver. "Stability in perceptual assimilation: Talker and vowel context effects". Journal of the Acoustical Society of America 116, n.º 4 (outubro de 2004): 2571. http://dx.doi.org/10.1121/1.4785265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Chang, Li-Hung, Kazuhisa Shibata, George J. Andersen, Yuka Sasaki e Takeo Watanabe. "Age-Related Declines of Stability in Visual Perceptual Learning". Current Biology 24, n.º 24 (dezembro de 2014): 2926–29. http://dx.doi.org/10.1016/j.cub.2014.10.041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Anderson, S. "The perceptual stability of moving stimuli is phase dependent". Ophthalmic and Physiological Optics 12, n.º 1 (janeiro de 1992): 81. http://dx.doi.org/10.1016/0275-5408(92)90016-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kloosterman, Niels A., Thomas Meindertsma, Arjan Hillebrand, Bob W. van Dijk, Victor A. F. Lamme e Tobias H. Donner. "Top-down modulation in human visual cortex predicts the stability of a perceptual illusion". Journal of Neurophysiology 113, n.º 4 (15 de fevereiro de 2015): 1063–76. http://dx.doi.org/10.1152/jn.00338.2014.

Texto completo da fonte
Resumo:
Conscious perception sometimes fluctuates strongly, even when the sensory input is constant. For example, in motion-induced blindness (MIB), a salient visual target surrounded by a moving pattern suddenly disappears from perception, only to reappear after some variable time. Whereas such changes of perception result from fluctuations of neural activity, mounting evidence suggests that the perceptual changes, in turn, may also cause modulations of activity in several brain areas, including visual cortex. In this study, we asked whether these latter modulations might affect the subsequent dynamics of perception. We used magnetoencephalography (MEG) to measure modulations in cortical population activity during MIB. We observed a transient, retinotopically widespread modulation of beta (12–30 Hz)-frequency power over visual cortex that was closely linked to the time of subjects' behavioral report of the target disappearance. This beta modulation was a top-down signal, decoupled from both the physical stimulus properties and the motor response but contingent on the behavioral relevance of the perceptual change. Critically, the modulation amplitude predicted the duration of the subsequent target disappearance. We propose that the transformation of the perceptual change into a report triggers a top-down mechanism that stabilizes the newly selected perceptual interpretation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Ciuffreda, Kenneth J., e Kimberly Engber. "Is One Eye Better Than Two When Viewing Pictorial Art?" Leonardo 35, n.º 1 (fevereiro de 2002): 37–40. http://dx.doi.org/10.1162/002409402753689290.

Texto completo da fonte
Resumo:
During viewing of most objects in one's everyday environment, the binocular and monocular relative depth cues interact in a harmonious, concordant and reinforcing manner to provide perceptual stability. However, when one views pictorial art, these binocular and monocular cues are discordant, and thus a perceptual “cue conflict” arises. This acts to reduce the relative apparent perceived distance of objects in a painting, thus producing overall perceptual depth “flattening.” The theory and physiology underlying this phenomenon are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hübner, Ronald, e Martin G. Fillinger. "Perceptual Balance, Stability, and Aesthetic Appreciation: Their Relations Depend on the Picture Type". i-Perception 10, n.º 3 (maio de 2019): 204166951985604. http://dx.doi.org/10.1177/2041669519856040.

Texto completo da fonte
Resumo:
It is widely assumed that the aesthetic appreciation of a picture depends, among others, on how well the picture’s composition is perceptually balanced, where “perceptual balance” is often defined analogous to mechanics. To what extent this metaphor holds for different picture types, however, is still open. Therefore, in this study, we examined the relationship between balance, liking, and some objective measures with pictures from an aesthetic sensitivity test. These stimuli could be divided into single-element, multiple-element, and dynamic-pattern pictures. The results show that “balance” is interpreted differently, depending on the stimulus type. Whereas “mechanical” balance was applied to assess single-element pictures, the balance of multiple-element and dynamic-pattern pictures was rated more in the sense of gravitational stability. Only for the multiple-element stimuli, there was a positive relation between balance/stability and liking. Together, our findings show that there are different types of balance, and that their relation with liking depends on the picture type.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Xu, Dingjie, Na Ren e Changqing Zhu. "Integrity Authentication Based on Blockchain and Perceptual Hash for Remote-Sensing Imagery". Remote Sensing 15, n.º 19 (7 de outubro de 2023): 4860. http://dx.doi.org/10.3390/rs15194860.

Texto completo da fonte
Resumo:
The integrity of remote-sensing image data is susceptible to corruption during storage and transmission. Perceptual hashing is a non-destructive data integrity-protection technique suitable for high-accuracy requirements of remote-sensing image data. However, the existing remote-sensing image perceptual hash-authentication algorithms face security issues in storing and transmitting the original perceptual hash value. This paper proposes a remote-sensing image integrity authentication method based on blockchain and perceptual hash to address this problem. The proposed method comprises three parts: perceptual hash value generation, secure blockchain storage and transmission, and remote-sensing image integrity authentication. An NSCT-based perceptual hashing algorithm that considers the multi-band characteristics of remote-sensing images is proposed. A Perceptual Hash Secure Storage and Transmission Framework (PH-SSTF) is designed by combining Hyperledger Fabric and InterPlanetary File System (IPFS). The experimental results show that the method can effectively verify remote-sensing image integrity and tamper with the location. The perceptual hashing algorithm exhibits strong robustness and sensitivity. Meanwhile, the comparison results of data-tampering identification for multiple landscape types show that the algorithm has stronger stability and broader applicability compared with existing perceptual hash algorithms. Additionally, the proposed method provides secure storage, transmission, and privacy protection for the perceptual hash value.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Fillinger, Martin G., e Ronald Hübner. "Relations Between Balance, Prototypicality, and Aesthetic Appreciation for Japanese Calligraphy". Empirical Studies of the Arts 38, n.º 2 (15 de outubro de 2018): 172–90. http://dx.doi.org/10.1177/0276237418805656.

Texto completo da fonte
Resumo:
Aesthetic appreciation of pictures partly depends on the perceptual balance of their elements. This relation has also been supported by objective measures predicting balance ratings as well as preference. Gershoni and Hochstein, however, applied these measures to Japanese calligraphies and failed to find such a relation, which questions the generality of these balance concepts. In our first experiment, we, therefore, tried to replicate these results with a slightly different method. In addition, we calculated further balance measures and collected liking ratings. As result, perceptual balance was again uncorrelated with the measures and with liking. In a second experiment, participants assessed the perceptual stability of the calligraphies, which was considered as alternative concept of balance, and their prototypicality. After discounting the effects of prototypicality on liking, there were correlations between liking and stability and between liking and one of the balance measures. However, the correlations were reliable only for atypical calligraphies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Klink, P. C., R. J. A. van Wezel e R. van Ee. "United we sense, divided we fail: context-driven perception of ambiguous visual stimuli". Philosophical Transactions of the Royal Society B: Biological Sciences 367, n.º 1591 (5 de abril de 2012): 932–41. http://dx.doi.org/10.1098/rstb.2011.0358.

Texto completo da fonte
Resumo:
Ambiguous visual stimuli provide the brain with sensory information that contains conflicting evidence for multiple mutually exclusive interpretations. Two distinct aspects of the phenomenological experience associated with viewing ambiguous visual stimuli are the apparent stability of perception whenever one perceptual interpretation is dominant, and the instability of perception that causes perceptual dominance to alternate between perceptual interpretations upon extended viewing. This review summarizes several ways in which contextual information can help the brain resolve visual ambiguities and construct temporarily stable perceptual experiences. Temporal context through prior stimulation or internal brain states brought about by feedback from higher cortical processing levels may alter the response characteristics of specific neurons involved in rivalry resolution. Furthermore, spatial or crossmodal context may strengthen the neuronal representation of one of the possible perceptual interpretations and consequently bias the rivalry process towards it. We suggest that contextual influences on perceptual choices with ambiguous visual stimuli can be highly informative about the neuronal mechanisms of context-driven inference in the general processes of perceptual decision-making.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Musunuri, Yogendra Rao, e Oh-Seol Kwon. "Deep Residual Dense Network for Single Image Super-Resolution". Electronics 10, n.º 5 (26 de fevereiro de 2021): 555. http://dx.doi.org/10.3390/electronics10050555.

Texto completo da fonte
Resumo:
In this paper, we propose a deep residual dense network (DRDN) for single image super- resolution. Based on human perceptual characteristics, the residual in residual dense block strategy (RRDB) is exploited to implement various depths in network architectures. The proposed model exhibits a simple sequential structure comprising residual and dense blocks with skip connections. It improves the stability and computational complexity of the network, as well as the perceptual quality. We adopt a perceptual metric to learn and assess the quality of the reconstructed images. The proposed model is trained with the Diverse2k dataset, and the performance is evaluated using standard datasets. The experimental results confirm that the proposed model exhibits superior performance, with better reconstruction results and perceptual quality than conventional methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Hamker, Fred H., Marc Zirnsak, Arnold Ziesche e Markus Lappe. "Computational models of spatial updating in peri-saccadic perception". Philosophical Transactions of the Royal Society B: Biological Sciences 366, n.º 1564 (27 de fevereiro de 2011): 554–71. http://dx.doi.org/10.1098/rstb.2010.0229.

Texto completo da fonte
Resumo:
Perceptual phenomena that occur around the time of a saccade, such as peri-saccadic mislocalization or saccadic suppression of displacement, have often been linked to mechanisms of spatial stability. These phenomena are usually regarded as errors in processes of trans-saccadic spatial transformations and they provide important tools to study these processes. However, a true understanding of the underlying brain processes that participate in the preparation for a saccade and in the transfer of information across it requires a closer, more quantitative approach that links different perceptual phenomena with each other and with the functional requirements of ensuring spatial stability. We review a number of computational models of peri-saccadic spatial perception that provide steps in that direction. Although most models are concerned with only specific phenomena, some generalization and interconnection between them can be obtained from a comparison. Our analysis shows how different perceptual effects can coherently be brought together and linked back to neuronal mechanisms on the way to explaining vision across saccades.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Fennell, John, Charlotte Goodwin, Jeremy F. Burn e Ute Leonards. "How visual perceptual grouping influences foot placement". Royal Society Open Science 2, n.º 7 (julho de 2015): 150151. http://dx.doi.org/10.1098/rsos.150151.

Texto completo da fonte
Resumo:
Everybody would agree that vision guides locomotion; but how does vision influence choice when there are different solutions for possible foot placement? We addressed this question by investigating the impact of perceptual grouping on foot placement in humans. Participants performed a stepping stone task in which pathways consisted of target stones in a spatially regular path of foot falls and visual distractor stones in their proximity. Target and distractor stones differed in shape and colour so that each subset of stones could be easily grouped perceptually. In half of the trials, one target stone swapped shape and colour with a distractor in its close proximity. We show that in these ‘swapped’ conditions, participants chose the perceptually groupable, instead of the spatially regular, stepping location in over 40% of trials, even if the distance between perceptually groupable steps was substantially larger than normal step width/length. This reveals that the existence of a pathway that could be traversed without spatial disruption to periodic stepping is not sufficient to guarantee participants will select it and suggests competition between different types of visual input when choosing foot placement. We propose that a bias in foot placement choice in favour of visual grouping exists as, in nature, sudden changes in visual characteristics of the ground increase the uncertainty for stability.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Repp, Bruno H. "Perceptual coherence of speech: Stability of silence-cued stop consonants." Journal of Experimental Psychology: Human Perception and Performance 11, n.º 6 (1985): 799–813. http://dx.doi.org/10.1037/0096-1523.11.6.799.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Cronin, Deborah A., e David E. Irwin. "Visual working memory supports perceptual stability across saccadic eye movements." Journal of Experimental Psychology: Human Perception and Performance 44, n.º 11 (novembro de 2018): 1739–59. http://dx.doi.org/10.1037/xhp0000567.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Burr, D., M. Cicchini, P. Binda e C. Morrone. "How transient "remapping" of neuronal receptive fields mediates perceptual stability". Journal of Vision 11, n.º 11 (23 de setembro de 2011): 537. http://dx.doi.org/10.1167/11.11.537.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Layton, Oliver W., e Brett R. Fajen. "Computational Mechanisms for Perceptual Stability using Disparity and Motion Parallax". Journal of Neuroscience 40, n.º 5 (7 de novembro de 2019): 996–1014. http://dx.doi.org/10.1523/jneurosci.0036-19.2019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Watanabe, Katsumi, e Kohske Takahashi. "Visual and Auditory Influence on Perceptual Stability in Visual Competition". Seeing and Perceiving 24, n.º 6 (2011): 545–64. http://dx.doi.org/10.1163/187847511x588809.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Tcheang, Lili, Stuart J. Gilson e Andrew Glennerster. "Systematic distortions of perceptual stability investigated using immersive virtual reality". Vision Research 45, n.º 16 (julho de 2005): 2177–89. http://dx.doi.org/10.1016/j.visres.2005.02.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Hupe, J. M., C. Lamirel e J. Lorenceau. "Pupil dilation does not predict subsequent stability in perceptual rivalry". Proceedings of the National Academy of Sciences 105, n.º 28 (2 de julho de 2008): E43. http://dx.doi.org/10.1073/pnas.0803456105.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia