Literatura científica selecionada sobre o tema "Peptides of innate immunity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Peptides of innate immunity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Peptides of innate immunity"
Easton, Donna M., Shuhua Ma, Neeloffer Mookherjee, Pamela Hamill, David Lynn, Jennifer Gardy, Sarah Mullaly et al. "Immunomodulatory activity of synthetic innate defence regulators (IDRs) (134.45)". Journal of Immunology 182, n.º 1_Supplement (1 de abril de 2009): 134.45. http://dx.doi.org/10.4049/jimmunol.182.supp.134.45.
Texto completo da fonteCederlund, Andreas, Gudmundur H. Gudmundsson e Birgitta Agerberth. "Antimicrobial peptides important in innate immunity". FEBS Journal 278, n.º 20 (19 de setembro de 2011): 3942–51. http://dx.doi.org/10.1111/j.1742-4658.2011.08302.x.
Texto completo da fonteGanz, Tomas. "Defensins: antimicrobial peptides of innate immunity". Nature Reviews Immunology 3, n.º 9 (setembro de 2003): 710–20. http://dx.doi.org/10.1038/nri1180.
Texto completo da fonteMoser, Christian, Daniel J. Weiner, Elena Lysenko, Robert Bals, Jeffrey N. Weiser e James M. Wilson. "β-Defensin 1 Contributes to Pulmonary Innate Immunity in Mice". Infection and Immunity 70, n.º 6 (junho de 2002): 3068–72. http://dx.doi.org/10.1128/iai.70.6.3068-3072.2002.
Texto completo da fonteBoulanger, Nathalie, Rebecca J. L. Munks, Joanne V. Hamilton, Françoise Vovelle, Reto Brun, Mike J. Lehane e Philippe Bulet. "Epithelial Innate Immunity". Journal of Biological Chemistry 277, n.º 51 (7 de outubro de 2002): 49921–26. http://dx.doi.org/10.1074/jbc.m206296200.
Texto completo da fonteShandala, Tetyana, e Doug A. Brooks. "Innate immunity and exocytosis of antimicrobial peptides". Communicative & Integrative Biology 5, n.º 2 (março de 2012): 214–16. http://dx.doi.org/10.4161/cib.19018.
Texto completo da fonteShin, Dong-Min, e Eun-Kyeong Jo. "Antimicrobial Peptides in Innate Immunity against Mycobacteria". Immune Network 11, n.º 5 (2011): 245. http://dx.doi.org/10.4110/in.2011.11.5.245.
Texto completo da fonteMoosova, Z., O. Adamovsky, M. Pekarova, L. Svihalkova Sindlerova, L. Kubala e L. Blaha. "Innate immunity response to selected cyanobacterial peptides". Toxicology Letters 238, n.º 2 (outubro de 2015): S223. http://dx.doi.org/10.1016/j.toxlet.2015.08.659.
Texto completo da fonteZasloff, Michael. "Antibiotic peptides as mediators of innate immunity". Current Biology 2, n.º 3 (março de 1992): 133. http://dx.doi.org/10.1016/0960-9822(92)90251-5.
Texto completo da fonteZanetti, Margherita. "Cathelicidins, multifunctional peptides of the innate immunity". Journal of Leukocyte Biology 75, n.º 1 (22 de julho de 2003): 39–48. http://dx.doi.org/10.1189/jlb.0403147.
Texto completo da fonteTeses / dissertações sobre o assunto "Peptides of innate immunity"
Sang, Yongming. "Porcine innate antiviral immunity : host defense peptides and toll-like receptors". Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/960.
Texto completo da fonteTollin, Maria. "Antimicrobial peptides and proteins in innate immunity : emphasis on isolation, characterization and gene regulation /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-270-5/.
Texto completo da fonteBarassé, Valentine. "Etude de peptides de venin de fourmis : diversité moléculaire et lien avec la fonction immunitaire". Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0111.
Texto completo da fonteAnimal venoms are natural libraries of bioactive compounds, called toxins, which have been finetuned through the course of evolution. However, numerous venomous organisms are still neglected, especially venomous insects. Several studies of ant venoms revealed that they were peptide-rich. Furthermore, the characterization of the ant Tetramorium bicarinatum venom peptidome revealed that, despite the diversity of mature peptides, they belonged to 3 superfamilies of precursors, some of which have already been described in other aculeate hymenoptera. This study also observed that genes encoding some of them were expressed outside the venom apparatus. These results raise questions about the mechanisms involved in the diversification of peptide toxins from ant venoms, as well as their role apart from the venomous function. To address these issues, the first part of this thesis work consisted in the characterization via proteotranscriptomics approaches of 7 venoms from ants belonging to the different phylogenetic tribes of the Myrmicinae subfamily, and of the venom of one species. belonging to a close subfamily, the Pseudomyrmecinae. A total of 100 peptide toxins with various structures were thus identified and classified into 8 precursor superfamilies. The second part explored the link between peptide toxins of T. bicarinatum venom and its innate immunity via molecular and cellular biology methods. The presence of transcripts encoding certain peptides have been verified in organs which are involved in innate immunity of insects (i.e. fat bodies, digestive tracts). The expression of the genes encoding them has also been evaluated following a bacterial infection. It has thus been shown that the transcripts encoding the selected venom peptides are present in the organs tested, and that some are produced in fat bodies in response to a bacterial infection. These results confirm the existence of a link between the venom peptides and the innate immunity of the ant T. bicarinatum, although further studies are needed
Bergsson, Gudmundur. "Antimicrobial polypeptides and lipids as a part of innate defense mechanism of fish and human fetus /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-546-1/.
Texto completo da fonteEdfeldt, Kristina. "Innate immunity in atherosclerosis : signaling pattern recognition receptors and an antimicrobial peptide /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-299-3/.
Texto completo da fonteSonthi, Molruedee. "Structure, polymorphisme et régulation de l'expression de la mytimycine, peptide antifongique de la moule Mytilus". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20105/document.
Texto completo da fonteAntimicrobial peptides are crucial elements of the innate immune mechanisms developed to fight microorganisms. Among them are antifungal peptides from which one, named mytimycin (MytM), had been partially reported in the blue mussel, Mytilus edulis. The purposes of this thesis were to fully characterize MytM in M. edulis and M. galloprovincialis and to understand how this peptide participates in mussel immunity. Results showed (i) the diversity of MytM mRNA and translated amino acid sequences according to geographic origin of mussels, probably resulting from adaptation to their environments; (ii) that 2 different MytM genes are simultaneously present in the genome of the same individual mussel; (iii) that expression level of MytM gene depends on the nature of the challenge, suggesting specific recognition processes; and (iv) MytM expression level was different from one mussel to another. In conclusion, MytM appeared to play a prominent and specific role in mussels. The advancement of our works added new data to the knowledge of innate immunity in invertebrates
Varma, Disha [Verfasser]. "Role of antimicrobial peptides in metabolism and innate immunity in Drosophila melanogaster / Disha Varma". Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1058400495/34.
Texto completo da fonteVladimer, Gregory I. "Inflammasomes and the Innate Immune Response Against Yersinia Pestis: A Dissertation". eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/649.
Texto completo da fonteVladimer, Gregory I. "Inflammasomes and the Innate Immune Response Against Yersinia Pestis: A Dissertation". eScholarship@UMMS, 2001. http://escholarship.umassmed.edu/gsbs_diss/649.
Texto completo da fonteAl, souhail Qasim Mohammed. "Characterization, regulation and biophysical studies of immune-related peptides from Manduca sexta". Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32618.
Texto completo da fonteBiochemistry and Molecular Biophysics Interdepartmental Program
Michael Kanost
Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC₅₀ of 12 μM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta. Biophysical analysis showed that diapausin-1 binds to the β-1,3 glucan component of the S. cerevisiae cell wall. A second insect peptide investigated in this project was M.sexta stress-response peptide 1(SRP1), an immune-related peptide upregulated under different stress conditions including immune-challenge. Preliminary results for NMR structure determination are presented. Most of the amino acid residue spin systems were assigned, and we determined the connectivities of many amino residues as a first step to solve the NMR structure. The circular dichroism spectrum of SRP1 indicates that the peptide lacks alpha-helical structure and may contain beta strands and turns.
Livros sobre o assunto "Peptides of innate immunity"
Hiemstra, Pieter S., e Sebastian A. J. Zaat, eds. Antimicrobial Peptides and Innate Immunity. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0541-4.
Texto completo da fonte-D, Hesch R., e Atkinson M. J, eds. Peptide hormones as mediators in immunology and oncology. New York: Raven Press, 1985.
Encontre o texto completo da fonteEzekowitz, R. Alan B., e Jules A. Hoffmann. Innate Immunity. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592593208.
Texto completo da fonteEwbank, Jonathan, e Eric Vivier, eds. Innate Immunity. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-570-1.
Texto completo da fonteJonathan, Ewbank, e Vivier E, eds. Innate immunity. Totowa, N.J: Humana Press, 2008.
Encontre o texto completo da fonteB, Ezekowitz R. Alan, e Hoffmann J. 1941-, eds. Innate immunity. Totowa, NJ: Humana Press, 2003.
Encontre o texto completo da fonteEzekowitz, R. Alan B., e Jules A. Hoffmann, eds. Innate Immunity. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-320-0.
Texto completo da fonteGassmann, Walter, ed. Plant Innate Immunity. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9458-8.
Texto completo da fonteMossman, Karen, ed. Innate Antiviral Immunity. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7237-1.
Texto completo da fonteLoon, L. C. van. Plant innate immunity. Editado por Wiley online library. Amsterdam: Elsevier Academic Press, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Peptides of innate immunity"
Ganz, Tomas, e Robert I. Lehrer. "Antimicrobial Peptides". In Innate Immunity, 287–303. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-320-0_16.
Texto completo da fonteBulet, Philippe, Maurice Charlet e Charles Hetru. "Antimicrobial Peptides in Insect Immunity". In Innate Immunity, 89–107. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-320-0_5.
Texto completo da fonteSeiler, Frederik, Robert Bals e Christoph Beisswenger. "Function of Antimicrobial Peptides in Lung Innate Immunity". In Antimicrobial Peptides, 33–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24199-9_3.
Texto completo da fonteZasloff, Michael. "Antimicrobial Peptides: Effectors of Innate Immunity". In The Innate Immune Response to Infection, 313–43. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817671.ch17.
Texto completo da fonteBartlett, Jennifer A., e Paul B. McCray. "Cystic Fibrosis and Defective Airway Innate Immunity". In Antimicrobial Peptides and Innate Immunity, 275–306. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_11.
Texto completo da fontePaiva, Aline Dias, e Eefjan Breukink. "Antimicrobial Peptides Produced by Microorganisms". In Antimicrobial Peptides and Innate Immunity, 53–95. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_3.
Texto completo da fonteStåhle, Mona. "Wound Repair and Antimicrobial Peptides". In Antimicrobial Peptides and Innate Immunity, 123–39. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_5.
Texto completo da fonteHof, Wim van ’t, Menno J. Oudhoff e Enno C. I. Veerman. "Histatins: Multifunctional Salivary Antimicrobial Peptides". In Antimicrobial Peptides and Innate Immunity, 167–81. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_7.
Texto completo da fonteStotz, H. U., F. Waller e K. Wang. "Innate Immunity in Plants: The Role of Antimicrobial Peptides". In Antimicrobial Peptides and Innate Immunity, 29–51. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_2.
Texto completo da fonteJäger, Simon, Eduard F. Stange e Jan Wehkamp. "Antimicrobial Peptides and Inflammatory Bowel Disease". In Antimicrobial Peptides and Innate Immunity, 255–73. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Peptides of innate immunity"
JAWAD, Israa, Adian Abd Alrazak DAKL e Hussein Jabar JASIM. "CHARACTERIZATION, MECHANISM OF ACTION, SOURCES TYPES AND USES OF THE ANTIMICROBIAL PEPTIDES IN DOMESTIC ANIMALS, REVIEW". In VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-13.
Texto completo da fonteKamareddine, Layla, Hoda Najjar, Abeer Mohbeddin, Nawar Haj Ahmed e Paula Watnick. "Between Immunity, Metabolism, and Development: A story of a Fly Gut!" In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0141.
Texto completo da fonteKovach, Melissa A., Fu-Shin Yu, Michael W. Newstead, Xianyng Zeng, Richard Gallo e Theodore J. Standiford. "Role Of Cathelicidin Related Antimicrobial Peptide In Lung Innate Mucosal Immunity". In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a5648.
Texto completo da fonteRakityanskaya, Irina Anisimovna, Tatiana Sergeevna Ryabova, Usmonali Adgaralievich Tajibaev e Anastasia Andreevna Kalashnikova. "NEW APPROACHES IN THE TREATMENT OF CHRONIC VIRAL EPSTEIN-BARR INFECTION". In Themed collection of papers from Foreign intemational scientific conference «Joint innovation - joint development». Medical sciences . Part 2. Ьу НNRI «National development» in cooperation with PS of UA. June 2023. Crossref, 2023. http://dx.doi.org/10.37539/230629.2023.23.77.016.
Texto completo da fonteLipatov Igor, Stanislavovich, Yuri Vladimirovich Tezikov e Marina Alekseevna Ovchinnikova. "EFFICIENCY OF GESTATIONAL AND PERINATAL PATHOLOGY PREVENTION WITH A CYTOKINE-LIKE PEPTIDE IN FREQUENTLY RECURRING HERPES AT THE PREGRAVID STAGE". In Themed collection of papers from Foreign intemational scientific conference «Joint innovation - joint development». Medical sciences . Part 2. Ьу НNRI «National development» in cooperation with PS of UA. June 2023. Crossref, 2023. http://dx.doi.org/10.37539/230629.2023.74.84.017.
Texto completo da fonteMohbeddin, Abeer, Nawar Haj Ahmed e Layla Kamareddine. "The use of Drosophila Melanogaster as a Model Organism to study the effect of Innate Immunity on Metabolism". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0224.
Texto completo da fonteAgarwal, Veena, John MacDougall, shubhendu Trivedi, Dimple Bhatia, Zeenia Jagga, Hemant Banga, Diane Healy, Sreenivas Adurthi e Vince O'Neill. "Abstract 962: The dipeptidyl peptidase inhibitor BXCL701 activates innate immunity followed by adaptive immunity on a molecular and cellular level in a mouse model of pancreatic cancer". In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-962.
Texto completo da fonteLimaye, Arati, Rania Bassiouni, Jeremiah Oyer, Robert W. Igarashi, Orielyz Flores, J. Manuel Perez, Alijca Copik e Annette R. Khaled. "Abstract A47: Use of a cytotoxic peptide that induces immunogenic cell death to engage innate immunity in the treatment of metastatic breast cancer". In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-a47.
Texto completo da fonteHoffmann, Jules. "Innate immunity: From insects to humans". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.116886.
Texto completo da fonteLam, M., S. Murphy, D. Kokkinaki e N. S. Mangalmurti. "Nucleic Acid-Sensing Erythrocytes Trigger Innate Immunity". In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a6498.
Texto completo da fonteRelatórios de organizações sobre o assunto "Peptides of innate immunity"
Alexandrea (Lexi) Duscher, Alexandrea (Lexi) Duscher. Squid in Space: Symbiosis and Innate Immunity. Experiment, agosto de 2017. http://dx.doi.org/10.18258/9855.
Texto completo da fonteUmland, Timothy C. Cross-Species Virus-Host Protein-Protein Interactions Inhibiting Innate Immunity. Fort Belvoir, VA: Defense Technical Information Center, julho de 2016. http://dx.doi.org/10.21236/ad1012633.
Texto completo da fonteCahill, Jesse. A targeted opsonization platform for programming innate immunity against rapidly evolving novel viruses. Office of Scientific and Technical Information (OSTI), setembro de 2021. http://dx.doi.org/10.2172/1820519.
Texto completo da fonteWeilhammer, D. R. Investigating the role of innate immunity in viral encephalitis caused by Rift Valley fever virus. Office of Scientific and Technical Information (OSTI), outubro de 2019. http://dx.doi.org/10.2172/1573140.
Texto completo da fonteBarber, Glen. Identifying a Defective Pathway in Innate Immunity as an Immunoescape Mechanism for Breast Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada566916.
Texto completo da fonteBaszler, Timothy, Igor Savitsky, Christopher Davies, Lauren Staska e Varda Shkap. Identification of bovine Neospora caninum cytotoxic T-lymphocyte epitopes for development of peptide-based vaccine. United States Department of Agriculture, março de 2006. http://dx.doi.org/10.32747/2006.7695592.bard.
Texto completo da fonteAlfano, James, Isaac Barash, Thomas Clemente, Paul E. Staswick, Guido Sessa e Shulamit Manulis. Elucidating the Functions of Type III Effectors from Necrogenic and Tumorigenic Bacterial Pathogens. United States Department of Agriculture, janeiro de 2010. http://dx.doi.org/10.32747/2010.7592638.bard.
Texto completo da fonteEvans, Donald L., Avigdor Eldar, Liliana Jaso-Friedmann e Herve Bercovier. Streptococcus Iniae Infection in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Towards the Pathogen and Vaccine Formulation. United States Department of Agriculture, fevereiro de 2005. http://dx.doi.org/10.32747/2005.7586538.bard.
Texto completo da fonteAvni, Adi, e Gitta L. Coaker. Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens. United States Department of Agriculture, janeiro de 2015. http://dx.doi.org/10.32747/2015.7600030.bard.
Texto completo da fonteNoga, Edward J., Angelo Colorni, Michael G. Levy e Ramy Avtalion. Importance of Endobiotics in Defense against Protozoan Ectoparasites of Fish. United States Department of Agriculture, setembro de 2003. http://dx.doi.org/10.32747/2003.7586463.bard.
Texto completo da fonte