Literatura científica selecionada sobre o tema "Penalized log-likelihood criterion"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Penalized log-likelihood criterion".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Penalized log-likelihood criterion"
Gao, Yongfeng, Siming Lu, Yongyi Shi, Shaojie Chang, Hao Zhang, Wei Hou, Lihong Li e Zhengrong Liang. "A Joint-Parameter Estimation and Bayesian Reconstruction Approach to Low-Dose CT". Sensors 23, n.º 3 (26 de janeiro de 2023): 1374. http://dx.doi.org/10.3390/s23031374.
Texto completo da fonteTang, Jiarui, An-Min Tang e Niansheng Tang. "Variable selection for joint models of multivariate skew-normal longitudinal and survival data". Statistical Methods in Medical Research, 5 de julho de 2023. http://dx.doi.org/10.1177/09622802231181767.
Texto completo da fontePluntz, Matthieu, Cyril Dalmasso, Pascale Tubert‐Bitter e Ismaïl Ahmed. "A Simple Information Criterion for Variable Selection in High‐Dimensional Regression". Statistics in Medicine, 12 de dezembro de 2024. https://doi.org/10.1002/sim.10275.
Texto completo da fonteLeonardi, Florencia, Rodrigo Carvalho e Iara Frondana. "Structure recovery for partially observed discrete Markov random fields on graphs under not necessarily positive distributions". Scandinavian Journal of Statistics, 2 de agosto de 2023. http://dx.doi.org/10.1111/sjos.12674.
Texto completo da fonteTeses / dissertações sobre o assunto "Penalized log-likelihood criterion"
Aubert, Julien. "Théorie de l'estimation pour les processus d'apprentissage". Electronic Thesis or Diss., Université Côte d'Azur, 2025. http://www.theses.fr/2025COAZ5001.
Texto completo da fonteThis thesis considers the problem of estimating the learning process of an individual during a task based on observed choices or actions of that individual. This question lies at the intersection of cognition, statistics, and reinforcement learning, and involves developing models that accurately capture the dynamics of learning, estimating model parameters, and selecting the best-fitting model. A key difficulty is that learning, by nature, leads to non-independent and non-stationary data, as the individual selects its actions depending on the outcome of its previous choices.Existing statistical theories and methods are well-established for independent and stationary data, but their application to a learning framework introduces significant challenges. This thesis seeks to bridge the gap between empirical methods and theoretical guarantees in computational modeling. I first explore the properties of maximum likelihood estimation on a model of learning based on a bandit problem. I then present general theoretical results on penalized log-likelihood model selection for non-stationary and dependent data, for which I develop a new concentration inequality for the suprema of renormalized processes. I also introduce a hold-out procedure and theoretical guarantees for it in a learning framework. These theoretical results are supported with applications on synthetic data and on real cognitive experiments in psychology and ethology
Capítulos de livros sobre o assunto "Penalized log-likelihood criterion"
Dawid, A. P. "Prequential Analysis, Stochastic Complexity and Bayesian Inference". In Bayesian Statistics 4, 109–26. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198522669.003.0007.
Texto completo da fonteAnderson, Raymond A. "Stats & Maths & Unicorns". In Credit Intelligence & Modelling, 405–34. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.003.0011.
Texto completo da fonte