Literatura científica selecionada sobre o tema "Pecten maximus – Toxicologie"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Pecten maximus – Toxicologie".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Pecten maximus – Toxicologie"
Stone, H. C., S. B. Wilson e J. Overnell. "Cadmium-Binding Proteins in the Scallop Pecten maximus". Environmental Health Perspectives 65 (março de 1986): 189. http://dx.doi.org/10.2307/3430179.
Texto completo da fonteStone, H. C., S. B. Wilson e J. Overnell. "Cadmium-binding proteins in the scallop Pecten maximus." Environmental Health Perspectives 65 (março de 1986): 189–91. http://dx.doi.org/10.1289/ehp.8665189.
Texto completo da fonteBlanco, Juan, Ángeles Moroño, Fabiola Arévalo, Jorge Correa, Covadonga Salgado, Araceli E. Rossignoli e J. Pablo Lamas. "Twenty-Five Years of Domoic Acid Monitoring in Galicia (NW Spain): Spatial, Temporal and Interspecific Variations". Toxins 13, n.º 11 (25 de outubro de 2021): 756. http://dx.doi.org/10.3390/toxins13110756.
Texto completo da fonteTurner, Andrew D., Adam M. Lewis, Robert G. Hatfield, Angus W. Galloway e Wendy A. Higman. "Transformation of paralytic shellfish poisoning toxins in Crassostrea gigas and Pecten maximus reference materials". Toxicon 60, n.º 6 (novembro de 2012): 1117–34. http://dx.doi.org/10.1016/j.toxicon.2012.07.013.
Texto completo da fonteBlanco, Juan, Aida Mauríz e Gonzalo Álvarez. "Distribution of Domoic Acid in the Digestive Gland of the King Scallop Pecten maximus". Toxins 12, n.º 6 (4 de junho de 2020): 371. http://dx.doi.org/10.3390/toxins12060371.
Texto completo da fonteLIU, H., M. KELLY, D. CAMPBELL, S. DONG, J. ZHU e S. WANG. "Exposure to domoic acid affects larval development of king scallop Pecten maximus (Linnaeus, 1758)". Aquatic Toxicology 81, n.º 2 (28 de fevereiro de 2007): 152–58. http://dx.doi.org/10.1016/j.aquatox.2006.11.012.
Texto completo da fonteVentoso, Pablo, Antonio J. Pazos, Juan Blanco, M. Luz Pérez-Parallé, Juan C. Triviño e José L. Sánchez. "Transcriptional Response in the Digestive Gland of the King Scallop (Pecten maximus) After the Injection of Domoic Acid". Toxins 13, n.º 5 (7 de maio de 2021): 339. http://dx.doi.org/10.3390/toxins13050339.
Texto completo da fonteMetian, M., M. Warnau, R. P. Cosson, F. Oberhänsli e P. Bustamante. "Bioaccumulation and detoxification processes of Hg in the king scallop Pecten maximus: Field and laboratory investigations". Aquatic Toxicology 90, n.º 3 (novembro de 2008): 204–13. http://dx.doi.org/10.1016/j.aquatox.2008.08.014.
Texto completo da fonteBraña Magdalena, A., M. Lehane, C. Moroney, A. Furey e K. J. James. "Food safety implications of the distribution of azaspiracids in the tissue compartments of scallops (Pecten maximus)". Food Additives & Contaminants 20, n.º 2 (fevereiro de 2003): 154–60. http://dx.doi.org/10.1080/0265203021000050275.
Texto completo da fonteDeshmukh, V., J. Deshpande e M. Wani. "Elicitation based enhancement of solasodine production in in-vitro cultures of different Solanum species". Journal of Environmental Biology 44, n.º 2 (13 de março de 2023): 167–74. http://dx.doi.org/10.22438/jeb/44/2/mrn-4011.
Texto completo da fonteTeses / dissertações sobre o assunto "Pecten maximus – Toxicologie"
Deléglise, Margot. "Suivi de la contamination des coquilles Saint-Jacques (Pecten maximus) par l'acide domoïque et exploration du rôle du microbiote dans sa décontamination". Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0022.
Texto completo da fonteThe King scallop {Pecten maximus) is an exception among domoic acid contaminated organisms, due to its long retention within the digestive gland. Although fishing bans in the event of contamination have a significant economie impact, the mechanism behind this slow depuration remains poorly understood. The aims of this thesis were therefore to i) examine in situ the contamination of P. maximus in correlation with the presence of Pseudo-nitzschia spp. and domoic acid in the water, to identify the various sources of contamination, ii) study the link between domoic acid depuration and P. maximus size, iii) explore the possibility of microorganisms accelerating the depuration of domoic acid in the digestive gland of P. maximus. Monitoring carried out since 2011 in the Bay of Brest has shown the importance of surface and bottom waters, as well as the presence of Pseudo-nitzschia spp. and domoic acid in P. maximus contamination, thus identifying three contamination scenarios. A two-month decontamination experiment revealed that smaller scallops seemed to depurate domoic acid faster than larger ones. Bacterial isolations from contaminated individuals revealed differences with other bivalve species considered to be rapid depurators. Although candidate bacterial strains were identified, no toxin reduction was observed after exposure to domoic acid. A transfer of microbiota from M. edulis to P. maximus was performed, showing a transfer of bacterial strains into the digestive gland of P. maximus. In conclusion, this work enriches our understanding of the various sources of domoic acid contamination of scallops, as well as the response of this bivalve to domoic acid according to its size. This thesis offers new insight for accelerating domoic acid depuration in Pecten maximus
Fritayre, Pascale. "Culture de cellules atriales de coquille Saint-Jacques, Pecten maximus : valeur et limites du modèle. Applications en toxicologie". Brest, 2004. http://www.theses.fr/2004BRES2015.
Texto completo da fonteIn this study, atrial cells primary cuture of the scallop, Pecten maximus was established. A monolayer culture can already be observed one week following the initial plating of either fresh or cryopreserved cells. Cell attachment was improved and was obtained faster when the cells were plated on marine substrate. Combined analytical techniques, tested in asynchronous cells and synchronised cells in transition G1/S, showed that about 15 % of plated cells are able to proliferate. The growth can be stimulated by supplementation of the medium with various factors but no permanent cell line have been obtained. Among adherent cells, the cardiomyocytes, characterized by both immunocytochemical and electrophysiological features (beta-adrenergic and muscarinic receptors), were able to spontaneously contract in vitro by using especially patch-clamp technique. One another kind of adherent cells, having structural similitaries with pericardial gland cells described to be important in the dexintoxication function, seems to be involved in biotransformation activities of phase I and II. Indeed, we have actually been able to stimulate these enzymatic activities by reference inductors and by some marine contaminants. Taken together, our cellular model demonstrate its potential for fundamental and applied bioessay research studies