Artigos de revistas sobre o tema "Pathogen attack"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pathogen attack".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
MARQUIS, ROBERT J., IVONE R. DINIZ e HELENA C. MORAIS. "Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado". Journal of Tropical Ecology 17, n.º 1 (janeiro de 2001): 127–48. http://dx.doi.org/10.1017/s0266467401001080.
Texto completo da fonteOPREA, Daniela, Maria JOITA-PACUREANU, Florin Gabriel ANTON e Luxita RISNOVEANU. "The Resistance of Sunflower to the Attack of Some Pathogenic Agents in the Climate Conditions of the Northeast Baragan". Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 79, n.º 2 (20 de novembro de 2022): 54–58. http://dx.doi.org/10.15835/buasvmcn-agr:2022.0034.
Texto completo da fonteInal, Jameel M., Ephraim A. Ansa-Addo e Sigrun Lange. "Interplay of host–pathogen microvesicles and their role in infectious disease". Biochemical Society Transactions 41, n.º 1 (29 de janeiro de 2013): 258–62. http://dx.doi.org/10.1042/bst20120257.
Texto completo da fonteRuano, Guillermo, e David Scheuring. "Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense". Plants 9, n.º 3 (21 de março de 2020): 389. http://dx.doi.org/10.3390/plants9030389.
Texto completo da fonteÁvila Méndez, Kelly, e Hernán Mauricio Romero. "Plant responses to pathogen attack: molecular basis of qualitative resistance". Revista Facultad Nacional de Agronomía 70, n.º 2 (1 de maio de 2017): 8225–35. http://dx.doi.org/10.15446/rfna.v70n2.64526.
Texto completo da fonteZhang, Xue, Yang-Shuo Dai, Yu-Xin Wang, Ze-Zhuo Su, Lu-Jun Yu, Zhen-Fei Zhang, Shi Xiao e Qin-Fang Chen. "Overexpression of the Arabidopsis MACPF Protein AtMACP2 Promotes Pathogen Resistance by Activating SA Signaling". International Journal of Molecular Sciences 23, n.º 15 (7 de agosto de 2022): 8784. http://dx.doi.org/10.3390/ijms23158784.
Texto completo da fontePaphitis, Katherine, Camille Achonu, Sandra Callery, Jonathan Gubbay, Kevin Katz, Matthew Muller, Herveen Sachdeva et al. "Beyond flu: Trends in respiratory infection outbreaks in Ontario healthcare settings from 2007 to 2017, and implications for non-influenza outbreak management". Canada Communicable Disease Report 47, n.º 56 (9 de junho de 2021): 269–75. http://dx.doi.org/10.14745/ccdr.v47i56a04.
Texto completo da fonteLeary, Alexandre Y., Nattapong Sanguankiattichai, Cian Duggan, Yasin Tumtas, Pooja Pandey, Maria E. Segretin, Jose Salguero Linares, Zachary D. Savage, Rui Jin Yow e Tolga O. Bozkurt. "Modulation of plant autophagy during pathogen attack". Journal of Experimental Botany 69, n.º 6 (23 de dezembro de 2017): 1325–33. http://dx.doi.org/10.1093/jxb/erx425.
Texto completo da fonteHUGHES, G. "Characterizing crop responses to patchy pathogen attack". Plant Pathology 39, n.º 1 (março de 1990): 2–4. http://dx.doi.org/10.1111/j.1365-3059.1990.tb02469.x.
Texto completo da fonteLin, Borong, Xue Qing, Jinling Liao e Kan Zhuo. "Role of Protein Glycosylation in Host-Pathogen Interaction". Cells 9, n.º 4 (20 de abril de 2020): 1022. http://dx.doi.org/10.3390/cells9041022.
Texto completo da fonteBiniaz, Yaser, Ahmad Tahmasebi, Aminallah Tahmasebi, Benedicte Albrectsen, Péter Poczai e Alireza Afsharifar. "Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana". Biology 11, n.º 8 (1 de agosto de 2022): 1155. http://dx.doi.org/10.3390/biology11081155.
Texto completo da fonteHusaini, Amjad M., Aafreen Sakina e Souliha R. Cambay. "Host–Pathogen Interaction in Fusarium oxysporum Infections: Where Do We Stand?" Molecular Plant-Microbe Interactions® 31, n.º 9 (setembro de 2018): 889–98. http://dx.doi.org/10.1094/mpmi-12-17-0302-cr.
Texto completo da fonteLee, Junghwan, e Chang-Hwa Song. "Effect of Reactive Oxygen Species on the Endoplasmic Reticulum and Mitochondria during Intracellular Pathogen Infection of Mammalian Cells". Antioxidants 10, n.º 6 (28 de maio de 2021): 872. http://dx.doi.org/10.3390/antiox10060872.
Texto completo da fonteSantos, Bráulio A., Mauricio Quesada, Fernando Rosas e Julieta Benítez-Malvido. "Potential Effects of Host Height and Phenology on Adult Susceptibility to Foliar Attack in Tropical Dry Forest Grass". ISRN Ecology 2011 (27 de abril de 2011): 1–7. http://dx.doi.org/10.5402/2011/730801.
Texto completo da fonteHoagland, Robert E. "Chemical Interactions with Bioherbicides to Improve Efficacy". Weed Technology 10, n.º 3 (setembro de 1996): 651–74. http://dx.doi.org/10.1017/s0890037x00040586.
Texto completo da fonteYao, Nan, Satoshi Imai, Yasuomi Tada, Hitoshi Nakayashiki, Yukio Tosa, Pyoyun Park e Shigeyuki Mayama. "Apoptotic Cell Death is a Common Response to Pathogen Attack in Oats". Molecular Plant-Microbe Interactions® 15, n.º 10 (outubro de 2002): 1000–1007. http://dx.doi.org/10.1094/mpmi.2002.15.10.1000.
Texto completo da fontePELTONEN, S. "Induced defence responses of cereals to pathogen attack". Agricultural and Food Science 8, n.º 4-5 (4 de janeiro de 1999): 479–92. http://dx.doi.org/10.23986/afsci.5642.
Texto completo da fonteJohnson, Chad, J. Muse Davis, Anna Huttenlocher, John Kernien e Jeniel Nett. "970. Emerging Pathogen Candida auris Evades Neutrophil Attack". Open Forum Infectious Diseases 5, suppl_1 (novembro de 2018): S37. http://dx.doi.org/10.1093/ofid/ofy209.086.
Texto completo da fonteBasri, Hasan. "Texture Feature Extraction of Pathogen Microscopic Image Using Discrete Wavelet Transform". Jurnal Riset Informatika 5, n.º 1 (14 de dezembro de 2022): 549–54. http://dx.doi.org/10.34288/jri.v5i1.488.
Texto completo da fonteIrawan, S., e E. Antriyandarti. "BIOTRICO: A Breakthrough Fertilizer for Sustainable Agriculture". IOP Conference Series: Earth and Environmental Science 940, n.º 1 (1 de dezembro de 2021): 012047. http://dx.doi.org/10.1088/1755-1315/940/1/012047.
Texto completo da fonteDehgahi, Raheleh, Sreeramanan Subramaniam, Latiffah Zakaria, Alireza Joniyas, Farid Beiki Firouzjahi, Kianoosh Haghnama e Mohammad Razinataj. "Review of Research on Fungal Pathogen Attack and Plant Defense Mechanism against Pathogen". International Journal of Scientific Research in Agricultural Sciences 2, n.º 8 (1 de agosto de 2015): 197–208. http://dx.doi.org/10.12983/ijsras-2015-p0197-0208.
Texto completo da fonteDanu Tuheteru, Faisal, Sri Utami, Illa Anggraeni, Husna Husna e Agus Kurniawan. "PENYAKIT BERCAK DAUN PADA BIBIT BITTI (Vitex cofassusReinw.) DI PERSEMAIAN". Jurnal Pemuliaan Tanaman Hutan 15, n.º 2 (30 de dezembro de 2021): 77–84. http://dx.doi.org/10.20886/jpth.2021.15.2.77-84.
Texto completo da fonteButt, Ghazala Rauf, Zainab Abdul Qayyum e Matthew Alan Jones. "Plant Defence Mechanisms Are Modulated by the Circadian System". Biology 9, n.º 12 (9 de dezembro de 2020): 454. http://dx.doi.org/10.3390/biology9120454.
Texto completo da fonteBaruah, Indrani, Gajendra Mohan Baldodiya, Jagajjit Sahu e Geetanjali Baruah. "Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense". Current Genomics 21, n.º 7 (22 de outubro de 2020): 491–503. http://dx.doi.org/10.2174/1389202921999200727213500.
Texto completo da fonteZhu, Qian-Hao, Wei-Xing Shan, Michael A. Ayliffe e Ming-Bo Wang. "Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions". Molecular Plant-Microbe Interactions® 29, n.º 3 (março de 2016): 187–96. http://dx.doi.org/10.1094/mpmi-08-15-0194-fi.
Texto completo da fonteKu, Yee-Shan, Sau-Shan Cheng, Aisha Gerhardt, Ming-Yan Cheung, Carolina A. Contador, Lok-Yiu Winnie Poon e Hon-Ming Lam. "Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean". International Journal of Molecular Sciences 21, n.º 23 (5 de dezembro de 2020): 9294. http://dx.doi.org/10.3390/ijms21239294.
Texto completo da fonteTrandafirescu, M., A. Indreias e I. Trandafirescu. "EVALUATION OF APRICOT BREEDING SELECTION RESISTANCE TO PATHOGEN ATTACK". Acta Horticulturae, n.º 903 (agosto de 2011): 241–45. http://dx.doi.org/10.17660/actahortic.2011.903.30.
Texto completo da fonteIslam, Waqar, Ali Noman, Muhammad Qasim e Liande Wang. "Plant Responses to Pathogen Attack: Small RNAs in Focus". International Journal of Molecular Sciences 19, n.º 2 (8 de fevereiro de 2018): 515. http://dx.doi.org/10.3390/ijms19020515.
Texto completo da fonteMcCullough, Kenneth C., Nicolas Ruggli e Artur Summerfield. "Dendritic cells—At the front-line of pathogen attack". Veterinary Immunology and Immunopathology 128, n.º 1-3 (março de 2009): 7–15. http://dx.doi.org/10.1016/j.vetimm.2008.10.290.
Texto completo da fonteLeontovyčová, Hana, Tetiana Kalachova e Martin Janda. "Disrupted actin: a novel player in pathogen attack sensing?" New Phytologist 227, n.º 6 (13 de maio de 2020): 1605–9. http://dx.doi.org/10.1111/nph.16584.
Texto completo da fonteMAUCH-MANI, B. "Salicylic Acid and Systemic Acquired Resistance to Pathogen Attack". Annals of Botany 82, n.º 5 (novembro de 1998): 535–40. http://dx.doi.org/10.1006/anbo.1998.0726.
Texto completo da fonteKanwar, Poonam, e Gopaljee Jha. "Alterations in plant sugar metabolism: signatory of pathogen attack". Planta 249, n.º 2 (28 de setembro de 2018): 305–18. http://dx.doi.org/10.1007/s00425-018-3018-3.
Texto completo da fonteMukherjee, Rukmini, e Ivan Dikic. "Regulation of Host-Pathogen Interactions via the Ubiquitin System". Annual Review of Microbiology 76, n.º 1 (8 de setembro de 2022): 211–33. http://dx.doi.org/10.1146/annurev-micro-041020-025803.
Texto completo da fonteShahzadi, Iqra, Aqeel Ahmad, Nasim Ahmad Yasin, Ghulam Fareed, Yaseen Ashraf, Waheed Akram, Waheed Ullah Khan e Muhammad Tayyab. "First report of Alternaria brassicicola causing leaf spots on garlic, an important food and medicinal plant". Journal of Medicinal Botany 1 (1 de maio de 2017): 08. http://dx.doi.org/10.25081/jmb.2017.v1.48.
Texto completo da fonteGarcía-Guzmán, Graciela, e Julieta Benítez-Malvido. "Effect of litter on the incidence of leaf-fungal pathogens and herbivory in seedlings of the tropical tree Nectandra ambigens". Journal of Tropical Ecology 19, n.º 2 (6 de fevereiro de 2003): 171–77. http://dx.doi.org/10.1017/s0266467403003195.
Texto completo da fonteMendoza-Soto, Ana Belén, Amada Zulé Rodríguez-Corral, Adriana Bojórquez-López, Maylin Cervantes-Rojo, Claudia Castro-Martínez e Melina Lopez-Meyer. "Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves". Biology 11, n.º 6 (2 de junho de 2022): 854. http://dx.doi.org/10.3390/biology11060854.
Texto completo da fonteBano, Ambreen, Anmol Gupta, Manas Ranjan Prusty e Manoj Kumar. "Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits". Stresses 3, n.º 1 (30 de janeiro de 2023): 231–55. http://dx.doi.org/10.3390/stresses3010018.
Texto completo da fonteBanks, Jonathan, e Glynn Percival. "Evaluation of Biostimulants to Control Guignardia Leaf Blotch (Guignardia aesculi) of Horsechestnut and Black Spot (Diplocarpon rosae) of Roses". Arboriculture & Urban Forestry 38, n.º 6 (1 de novembro de 2012): 258–61. http://dx.doi.org/10.48044/jauf.2012.035.
Texto completo da fonteInglese, S. J., e N. D. Paul. "Tolerance of Senecio vulgaris to Infection and Disease Caused by Native and Alien Rust Fungi". Phytopathology® 96, n.º 7 (julho de 2006): 718–26. http://dx.doi.org/10.1094/phyto-96-0718.
Texto completo da fonteArnaudov, Veselin, Stefan Gandev e Milena Dimova. "Susceptibility of Some Walnut Cultivars to Gnomonia leptostyla and Xanthomonas arboricola pv. juglandis in Bulgaria". АГРОЗНАЊЕ 15, n.º 1 (15 de junho de 2015): 41. http://dx.doi.org/10.7251/agren1401041a.
Texto completo da fonteGómez-Ariza, Jorge, Sonia Campo, Mar Rufat, Montserrat Estopà, Joaquima Messeguer, Blanca San Segundo e María Coca. "Sucrose-Mediated Priming of Plant Defense Responses and Broad-Spectrum Disease Resistance by Overexpression of the Maize Pathogenesis-Related PRms Protein in Rice Plants". Molecular Plant-Microbe Interactions® 20, n.º 7 (julho de 2007): 832–42. http://dx.doi.org/10.1094/mpmi-20-7-0832.
Texto completo da fonteMALINAS, Cristian, Ioan OROIAN, Antonia ODAGIU, Cristrian IEDERAN e Alexandra SUCIU. "Meta - Models Efficiency in Assessing the Vegetal Pathogens Attack". Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 70, n.º 2 (25 de novembro de 2013): 347–51. http://dx.doi.org/10.15835/buasvmcn-agr:9754.
Texto completo da fonteMeyer, Susan E., Julie Beckstead e Phil S. Allen. "Niche specialization in Bromus tectorum seed bank pathogens". Seed Science Research 28, n.º 3 (13 de junho de 2018): 215–21. http://dx.doi.org/10.1017/s0960258518000193.
Texto completo da fonteHardham, Adrienne R., e David M. Cahill. "The role of oomycete effectors in plant - pathogen interactions". Functional Plant Biology 37, n.º 10 (2010): 919. http://dx.doi.org/10.1071/fp10073.
Texto completo da fonteMiller, Gabriel A., Judith K. Pell e Stephen J. Simpson. "Crowded locusts produce hatchlings vulnerable to fungal attack". Biology Letters 5, n.º 6 (12 de agosto de 2009): 845–48. http://dx.doi.org/10.1098/rsbl.2009.0495.
Texto completo da fonteKupfer, Tom R., e Daniel M. T. Fessler. "Ectoparasite defence in humans: relationships to pathogen avoidance and clinical implications". Philosophical Transactions of the Royal Society B: Biological Sciences 373, n.º 1751 (4 de junho de 2018): 20170207. http://dx.doi.org/10.1098/rstb.2017.0207.
Texto completo da fonteFarahani, Ali Safaie, e Mohsen Taghavi. "Changes of antioxidant enzymes of mung bean [Vigna radiata (L.) R. Wilczek] in response to host and non-host bacterial pathogens". Journal of Plant Protection Research 56, n.º 1 (1 de janeiro de 2016): 95–99. http://dx.doi.org/10.1515/jppr-2016-0016.
Texto completo da fonteLippok, Bernadette, Rainer P. Birkenbihl, Gaelle Rivory, Janna Brümmer, Elmon Schmelzer, Elke Logemann e Imre E. Somssich. "Expression of AtWRKY33 Encoding a Pathogen- or PAMP-Responsive WRKY Transcription Factor Is Regulated by a Composite DNA Motif Containing W Box Elements". Molecular Plant-Microbe Interactions® 20, n.º 4 (abril de 2007): 420–29. http://dx.doi.org/10.1094/mpmi-20-4-0420.
Texto completo da fonteParvaiz, Aqsa, Ghulam Mustafa e Faiz A. Joyia. "UNDERSTANDING INVASIVE PLANT MYCOPARASITES AND THEIR REMEDY THROUGH ADVANCED MOLECULAR APPROACHES". Pakistan Journal of Phytopathology 30, n.º 2 (27 de dezembro de 2018): 213. http://dx.doi.org/10.33866/phytopathol.030.02.0452.
Texto completo da fonteGoodman, B. A. "The involvement of oxygen-derived free radicals in plant–pathogen interactions". Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 102 (1994): 479–93. http://dx.doi.org/10.1017/s0269727000014500.
Texto completo da fonte