Artigos de revistas sobre o tema "Particle sensor"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Particle sensor".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Siqi, Yucai Xie, Lianfeng Zhang, Yuwei Zhang, Shuyao Zhang, Chenzhao Bai e Wei Li. "Investigation of the Effect of Debris Position on the Detection Stability of a Magnetic Plug Sensor Based on Alternating Current Bridge". Sensors 24, n.º 1 (21 de dezembro de 2023): 55. http://dx.doi.org/10.3390/s24010055.
Texto completo da fonteFardi, B., B. MacGibbon, S. Tripathi e F. Moghadam. "Feasibility of an In-Situ Particle Monitor on a Tungsten LPCVD Reactor". Journal of the IEST 39, n.º 3 (31 de maio de 1996): 25–30. http://dx.doi.org/10.17764/jiet.2.39.3.f109749056q17677.
Texto completo da fonteHuang, Ching-Hsuan, Jiayang He, Elena Austin, Edmund Seto e Igor Novosselov. "Assessing the value of complex refractive index and particle density for calibration of low-cost particle matter sensor for size-resolved particle count and PM2.5 measurements". PLOS ONE 16, n.º 11 (11 de novembro de 2021): e0259745. http://dx.doi.org/10.1371/journal.pone.0259745.
Texto completo da fonteHong, Sung-Ho. "Numerical Approach and Verification Method for Improving the Sensitivity of Ferrous Particle Sensors with a Permanent Magnet". Sensors 23, n.º 12 (6 de junho de 2023): 5381. http://dx.doi.org/10.3390/s23125381.
Texto completo da fonteHagan, David H., e Jesse H. Kroll. "Assessing the accuracy of low-cost optical particle sensors using a physics-based approach". Atmospheric Measurement Techniques 13, n.º 11 (26 de novembro de 2020): 6343–55. http://dx.doi.org/10.5194/amt-13-6343-2020.
Texto completo da fonteHong, Sung-Ho. "Numerical Analysis for Appropriate Positioning of Ferrous Wear Debris Sensors with Permanent Magnet in Gearbox Systems". Sensors 24, n.º 3 (26 de janeiro de 2024): 810. http://dx.doi.org/10.3390/s24030810.
Texto completo da fonteKittimanapun, Kritsada, Natthawut Laojamnongwong, Jetnipit Kaewjai, Chinorat Kobdaj e Wanchaloem Poonsawat. "Commissioning of Pixel Sensor Telescope for Monolithic Active Pixel Sensor Characterization". Journal of Physics: Conference Series 2653, n.º 1 (1 de dezembro de 2023): 012029. http://dx.doi.org/10.1088/1742-6596/2653/1/012029.
Texto completo da fonteYuan, Changrong, Zhongsheng Sun e Xiaoning Li. "Mechanism and Modeling of Contaminant Accumulation on Hot-Film Air Flow Sensor". Mathematical Problems in Engineering 2019 (19 de fevereiro de 2019): 1–15. http://dx.doi.org/10.1155/2019/6246259.
Texto completo da fonteSantos da Silva, Safire Torres, Nikola Jerance e Harijaona Lalao Rakotoarison. "Simulating metallic contamination in permanent magnets used in magnetic sensors". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 38, n.º 5 (2 de setembro de 2019): 1683–95. http://dx.doi.org/10.1108/compel-12-2018-0515.
Texto completo da fonteFan, Bin, Lianfu Wang, Yong Liu, Peng Zhang e Song Feng. "Simulation and Optimization Design of Inductive Wear Particle Sensor". Sensors 23, n.º 10 (19 de maio de 2023): 4890. http://dx.doi.org/10.3390/s23104890.
Texto completo da fonteKumar, Paras, Harish Hirani e Atul Kumar Agrawal. "Online condition monitoring of misaligned meshing gears using wear debris and oil quality sensors". Industrial Lubrication and Tribology 70, n.º 4 (8 de maio de 2018): 645–55. http://dx.doi.org/10.1108/ilt-05-2016-0106.
Texto completo da fonteCheng, Gong, e Huangfu Wei. "Virtual Angle Boundary-Aware Particle Swarm Optimization to Maximize the Coverage of Directional Sensor Networks". Sensors 21, n.º 8 (19 de abril de 2021): 2868. http://dx.doi.org/10.3390/s21082868.
Texto completo da fonteNyang’au, Wilson Ombati, Andi Setiono, Maik Bertke, Harald Bosse e Erwin Peiner. "Cantilever-Droplet-Based Sensing of Magnetic Particle Concentrations in Liquids". Sensors 19, n.º 21 (1 de novembro de 2019): 4758. http://dx.doi.org/10.3390/s19214758.
Texto completo da fonteKAWASAKI, Yousuke, Haruzou MIYASITA e Tosio KIKUCHI. "Particles. Particle Measurements in Vacuum by In Situ Particle Monitor Sensor." SHINKU 41, n.º 9 (1998): 771–75. http://dx.doi.org/10.3131/jvsj.41.771.
Texto completo da fonteNovak, A., C. Granja, A. Sagatova, V. Zach, J. Stursa e C. Oancea. "Spectral tracking of proton beams by the Timepix3 detector with GaAs, CdTe and Si sensors". Journal of Instrumentation 18, n.º 01 (1 de janeiro de 2023): C01022. http://dx.doi.org/10.1088/1748-0221/18/01/c01022.
Texto completo da fonteKunić, Zdravko, Leo Mršić, Goran Đambić e Tomislav Ražov. "Innovative Air-Preconditioning Method for Accurate Particulate Matter Sensing in Humid Environments". Sensors 24, n.º 17 (23 de agosto de 2024): 5477. http://dx.doi.org/10.3390/s24175477.
Texto completo da fonteRaciti, B., Y. Gao, R. Schimassek, A. Andreazza, Z. Feng, H. Fox, Y. Han et al. "Characterisation of HV-MAPS ATLASPix3 and its applications for future lepton colliders". Journal of Instrumentation 17, n.º 09 (1 de setembro de 2022): C09031. http://dx.doi.org/10.1088/1748-0221/17/09/c09031.
Texto completo da fonteIkegami, Akihiko, Jun Kumoi, Yutaka Matsumi, Yuji Fujitani, Gaku Ichihara, Takeo Yano e Sahoko Ichihara. "P-193 FINER PARTICLES GENERATED FROM CARBON FIBER REINFORCED PLASTICS IN AN OCCUPATIONAL SETTING". Occupational Medicine 74, Supplement_1 (1 de julho de 2024): 0. http://dx.doi.org/10.1093/occmed/kqae023.0735.
Texto completo da fonteBudde, Matthias, Simon Leiner, Marcel Köpke, Johannes Riesterer, Till Riedel e Michael Beigl. "FeinPhone: Low-cost Smartphone Camera-based 2D Particulate Matter Sensor". Sensors 19, n.º 3 (12 de fevereiro de 2019): 749. http://dx.doi.org/10.3390/s19030749.
Texto completo da fonteLi, Yeming, Yidan Xia, Dailiang Xie, Ya Xu, Zhipeng Xu e Yuebing Wang. "Application of artificial bee colony algorithm for particle size distribution measurement of suspended sediment based on focused ultrasonic sensor". Transactions of the Institute of Measurement and Control 43, n.º 7 (11 de fevereiro de 2021): 1680–90. http://dx.doi.org/10.1177/0142331221989115.
Texto completo da fonteMartínez-Barberá, Humberto, Pablo Bernal-Polo e David Herrero-Pérez. "Sensor Modeling for Underwater Localization Using a Particle Filter". Sensors 21, n.º 4 (23 de fevereiro de 2021): 1549. http://dx.doi.org/10.3390/s21041549.
Texto completo da fonteGu, C., C. Bai, Y. Cheng, H. Shi, I. J. Lebile, H. Zhang e Y. Sun. "Design and experimental research of abrasive particle detection sensor based on coil magnetic field". Journal of Instrumentation 17, n.º 06 (1 de junho de 2022): P06017. http://dx.doi.org/10.1088/1748-0221/17/06/p06017.
Texto completo da fonteSchriefl, Mario Anton, Matthias Longin e Alexander Bergmann. "Charging-Based PN Sensing of Automotive Exhaust Particles". Proceedings 2, n.º 13 (3 de janeiro de 2019): 805. http://dx.doi.org/10.3390/proceedings2130805.
Texto completo da fonteJayaratne, Rohan, Xiaoting Liu, Phong Thai, Matthew Dunbabin e Lidia Morawska. "The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog". Atmospheric Measurement Techniques 11, n.º 8 (27 de agosto de 2018): 4883–90. http://dx.doi.org/10.5194/amt-11-4883-2018.
Texto completo da fonteDuan, Shu Min, e Jian Jun Wu. "Using Particle Swarm Optimization Algorithm to Construction Detection and Node Management System in Wireless Sensor Network". Advanced Materials Research 1078 (dezembro de 2014): 426–29. http://dx.doi.org/10.4028/www.scientific.net/amr.1078.426.
Texto completo da fonteJia, Ran, Biao Ma, Changsong Zheng, Xin Ba, Liyong Wang, Qiu Du e Kai Wang. "Comprehensive Improvement of the Sensitivity and Detectability of a Large-Aperture Electromagnetic Wear Particle Detector". Sensors 19, n.º 14 (18 de julho de 2019): 3162. http://dx.doi.org/10.3390/s19143162.
Texto completo da fonteKrishnan e Goud. "Magnetic Particle Bioconjugates: A Versatile Sensor Approach". Magnetochemistry 5, n.º 4 (19 de novembro de 2019): 64. http://dx.doi.org/10.3390/magnetochemistry5040064.
Texto completo da fonteBecker, Andrew. "Health indicator metrics applicable to inductive wear debris sensors". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 231, n.º 5 (16 de agosto de 2016): 583–93. http://dx.doi.org/10.1177/1350650116665047.
Texto completo da fonteWang, Yan Shan, Mei Ju Zhang e De Feng Liu. "A Compact on-Line Particle Counter Sensor for Hydraulic Oil Contamination Detection". Applied Mechanics and Materials 130-134 (outubro de 2011): 4198–201. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.4198.
Texto completo da fonteTang, Dong, Zhixuan Ju e Li Wang. "Simulation and Experimental Research on the Charged Characteristics of Particulate Matter in the Sensor under Different Exhaust States". Sensors 20, n.º 21 (31 de outubro de 2020): 6226. http://dx.doi.org/10.3390/s20216226.
Texto completo da fonteGao, Heming, e Susu Zhong. "Research on spatial filtering velocity measurement method for an interdigital electrostatic sensor". Measurement Science and Technology 33, n.º 5 (10 de fevereiro de 2022): 055106. http://dx.doi.org/10.1088/1361-6501/ac40a8.
Texto completo da fonteBousiotis, Dimitrios, Ajit Singh, Molly Haugen, David C. S. Beddows, Sebastián Diez, Killian L. Murphy, Pete M. Edwards, Adam Boies, Roy M. Harrison e Francis D. Pope. "Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors – a comparative study". Atmospheric Measurement Techniques 14, n.º 6 (7 de junho de 2021): 4139–55. http://dx.doi.org/10.5194/amt-14-4139-2021.
Texto completo da fonteLim, Jaechan, e Hyung-Min Park. "Tracking by Risky Particle Filtering over Sensor Networks". Sensors 20, n.º 11 (31 de maio de 2020): 3109. http://dx.doi.org/10.3390/s20113109.
Texto completo da fonteArinchev, S. V. "Newton’s Third Law is not a Dogma but a Computational Hypothesis". Proceedings of Higher Educational Institutions. Маchine Building, n.º 06 (723) (junho de 2020): 36–50. http://dx.doi.org/10.18698/0536-1044-2020-6-36-50.
Texto completo da fonteQin, Bo Ying, e Xian Kun Lin. "Optimal Sensor Placement Based on Particle Swarm Optimization". Advanced Materials Research 271-273 (julho de 2011): 1108–13. http://dx.doi.org/10.4028/www.scientific.net/amr.271-273.1108.
Texto completo da fonteBächler, P., J. Meyer e A. Dittler. "Characterization of the emission behavior of pulse-jet cleaned filters using a low-cost particulate matter sensor/Charakterisierung der Emission von druckstoßgereinigten Oberflächenfiltern mit einem Low-Cost-Feinstaubsensor". Gefahrstoffe 79, n.º 11-12 (2019): 443–50. http://dx.doi.org/10.37544/0949-8036-2019-11-12-49.
Texto completo da fonteLi, Liangbo, Ang Chen, Tian Deng, Jin Zeng, Feifan Xu, Shu Yan, Shu Wang, Wenqing Cheng, Ming Zhu e Wenbo Xu. "A Simple Optical Aerosol Sensing Method of Sauter Mean Diameter for Particulate Matter Monitoring". Biosensors 12, n.º 7 (21 de junho de 2022): 436. http://dx.doi.org/10.3390/bios12070436.
Texto completo da fonteJobert, Gabriel, Pierre Barritault, Maryse Fournier, Cyrielle Monpeurt, Salim Boutami, Cécile Jamois, Pietro Bernasconi, Andrea Lovera, Daniele Braga e Christian Seassal. "Miniature Optical Particle Counter and Analyzer Involving a Fluidic-Optronic CMOS Chip Coupled with a Millimeter-Sized Glass Optical System". Sensors 21, n.º 9 (3 de maio de 2021): 3181. http://dx.doi.org/10.3390/s21093181.
Texto completo da fonteLiu, Zhenzhen, Yan Liu, Hongfu Zuo, Han Wang e Zhixiong Chen. "An Oil Wear Particles Inline Optical Sensor Based on Motion Characteristics for Rotating Machines Condition Monitoring". Machines 10, n.º 9 (25 de agosto de 2022): 727. http://dx.doi.org/10.3390/machines10090727.
Texto completo da fonteHan, Wenbo, Xiaotong Mu, Yu Liu, Xin Wang, Wei Li, Chenzhao Bai e Hongpeng Zhang. "A Critical Review of On-Line Oil Wear Debris Particle Detection Sensors". Journal of Marine Science and Engineering 11, n.º 12 (14 de dezembro de 2023): 2363. http://dx.doi.org/10.3390/jmse11122363.
Texto completo da fonteReynaud, Adrien, Mickael Leblanc, Stéphane Zinola, Philippe Breuil e Jean-Paul Viricelle. "Soot Particle Classifications in the Context of a Resistive Sensor Study". Proceedings 2, n.º 13 (7 de dezembro de 2018): 987. http://dx.doi.org/10.3390/proceedings2130987.
Texto completo da fonteReynaud, Adrien, Mickaël Leblanc, Stéphane Zinola, Philippe Breuil e Jean-Paul Viricelle. "Responses of a Resistive Soot Sensor to Different Mono-Disperse Soot Aerosols". Sensors 19, n.º 3 (9 de fevereiro de 2019): 705. http://dx.doi.org/10.3390/s19030705.
Texto completo da fontePOLATOĞLU, Ahmet, e Cahit YEŞİLYAPRAK. "Using and Testing Camera Sensors with Different Devices at Cosmic Ray Detection". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16, n.º 2 (24 de agosto de 2023): 590–97. http://dx.doi.org/10.18185/erzifbed.1167041.
Texto completo da fonteBai, Chenzhao, Hongpeng Zhang, Chengjie Wang, Lebile Ilerioluwa Joseph, Qiang Wang, Yucai Xie e Guobin Li. "Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology". Polymers 12, n.º 9 (4 de setembro de 2020): 2022. http://dx.doi.org/10.3390/polym12092022.
Texto completo da fonteSharar, Nour, Konstantin Wüstefeld, Rahat Morad Talukder, Julija Skolnik, Katharina Kaufmann, Bernd Giebel, Verena Börger et al. "The Employment of the Surface Plasmon Resonance (SPR) Microscopy Sensor for the Detection of Individual Extracellular Vesicles and Non-Biological Nanoparticles". Biosensors 13, n.º 4 (12 de abril de 2023): 472. http://dx.doi.org/10.3390/bios13040472.
Texto completo da fonteKuo, Yu-Mei, Shin-Yu Weng, Sheng-Hsiu Huang, Chih-Wei Lin e Chih-Chieh Chen. "2 Low-Cost Pm Sensor Performance Testing". Annals of Work Exposures and Health 67, Supplement_1 (1 de maio de 2023): i3. http://dx.doi.org/10.1093/annweh/wxac087.008.
Texto completo da fonteNyang’au, Wilson Ombati, Andi Setiono, Angelika Schmidt, Harald Bosse e Erwin Peiner. "Sampling and Mass Detection of a Countable Number of Microparticles Using on-Cantilever Imprinting". Sensors 20, n.º 9 (28 de abril de 2020): 2508. http://dx.doi.org/10.3390/s20092508.
Texto completo da fonteBiró, Norbert, e Péter Kiss. "Euro VI-d Compliant Diesel Engine’s Sub-23 nm Particle Emission". Sensors 23, n.º 2 (4 de janeiro de 2023): 590. http://dx.doi.org/10.3390/s23020590.
Texto completo da fonteKuula, Joel, Timo Mäkelä, Minna Aurela, Kimmo Teinilä, Samu Varjonen, Óscar González e Hilkka Timonen. "Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors". Atmospheric Measurement Techniques 13, n.º 5 (15 de maio de 2020): 2413–23. http://dx.doi.org/10.5194/amt-13-2413-2020.
Texto completo da fonteJamaludin, Amirul, Norhidayah Mohamad Yatim, Zarina Mohd Noh e Norlida Buniyamin. "Rao-Blackwellized Particle Filter Algorithm Integrated with Neural Network Sensor Model Using Laser Distance Sensor". Micromachines 14, n.º 3 (27 de fevereiro de 2023): 560. http://dx.doi.org/10.3390/mi14030560.
Texto completo da fonte