Literatura científica selecionada sobre o tema "Parabolic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Parabolic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Parabolic"
Botvynovska, Svitlana, Zhanetta Levina e Hanna Sulimenko. "IMAGING OF A HYPERBOLIC PARABOLOID WITH TOUCHING LINE WITH THE PARABOLAL WRAPPING CONE". Management of Development of Complex Systems, n.º 48 (20 de dezembro de 2021): 53–60. http://dx.doi.org/10.32347/2412-9933.2021.48.53-60.
Texto completo da fonteZhu, Yuanchao, Dazhao Zhang, Yanlin Lai e Huabiao Yan. "Shape adjustment of "FAST" active reflector". Highlights in Science, Engineering and Technology 1 (14 de junho de 2022): 391–400. http://dx.doi.org/10.54097/hset.v1i.493.
Texto completo da fonteAcharya, Aviseka, Sonja Brungs, Yannick Lichterfeld, Jürgen Hescheler, Ruth Hemmersbach, Helene Boeuf e Agapios Sachinidis. "Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes". Cells 8, n.º 4 (14 de abril de 2019): 352. http://dx.doi.org/10.3390/cells8040352.
Texto completo da fonteStojanov, V. V., S. J. Jgalli e V. O. Stojanov. "THE CONSTITUENT ELEMENTS STRUCTURES COVERING OF HYPERBOLIC PARABOLOID". ACADEMIC JOURNAL Series: Industrial Machine Building, Civil Engineering 1, n.º 48 (27 de março de 2017): 54–61. http://dx.doi.org/10.26906/znp.2017.48.769.
Texto completo da fonteHayah, Ni, Bakri Mallo e I. Nyoman Murdiana. "PROFIL PEMAHAMAN KONSEP MATEMATIKA DITINJAU DARI GAYA KOGNITIF FIELD INDEPENDENT (FI) DAN FIELD DEPENDENT (FD)". Aksioma 8, n.º 2 (24 de setembro de 2019): 137–50. http://dx.doi.org/10.22487/aksioma.v8i2.210.
Texto completo da fonteWang, Yanbo, Yingchang Xiong, Jianming Hao, Jiaqi He, Yuchi Liu e Xinpeng He. "Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods". Symmetry 14, n.º 2 (27 de janeiro de 2022): 252. http://dx.doi.org/10.3390/sym14020252.
Texto completo da fonteTang, Hongxin. "Parabolic Detection Algorithm of Tennis Serve Based on Video Image Analysis Technology". Security and Communication Networks 2021 (29 de novembro de 2021): 1–9. http://dx.doi.org/10.1155/2021/7901677.
Texto completo da fonteSharma, N. K., Ashok Kumar Mishra e P. Rajgopal. "Design of Low-Cost Solar Parabolic Through Steam Sterilization". International Journal of Biomedical and Clinical Engineering 10, n.º 1 (janeiro de 2021): 50–60. http://dx.doi.org/10.4018/ijbce.2021010104.
Texto completo da fonteStavek, Jiri. "Newton’s Parabola Observed from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Castillon’s Cardioid, and Ptolemy’s Circle (Hodograph) (09.02.2019)". Applied Physics Research 11, n.º 2 (25 de fevereiro de 2019): 30. http://dx.doi.org/10.5539/apr.v11n2p30.
Texto completo da fontePetkov, Emiliyan G. "Development and Implementation of NURBS Models of Quadratic Curves and Surfaces". Serdica Journal of Computing 3, n.º 4 (11 de janeiro de 2010): 425–48. http://dx.doi.org/10.55630/sjc.2009.3.425-448.
Texto completo da fonteTeses / dissertações sobre o assunto "Parabolic"
Hertz, Erik. "Parabolic Synthesis". Licentiate thesis, Department of Electrical and Information Technology Faculty of Engineering, LTH, Lund University, Lund, Sweden, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-22338.
Texto completo da fonteHeyer, Claudius. "Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomials". Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20137.
Texto completo da fonteThe first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$. In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
Gantz, Christian. "On parabolic bundles". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320221.
Texto completo da fonteBoger, D. (Dorin). "Parabolic Springer resolution". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104605.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-75).
Let G be a reductive group over a field k = k. Let P be a parabolic subgroup. We construct a functor Groupoid ... is a connected space, which induces an action of generalizing a classical result. It is also a part of a study of natural equivalences between ... for P, Q associated parabolic subgroups.
by D. Boger.
Ph. D.
Žúrek, Dan. "Nízkoprofilová směrová anténa". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242122.
Texto completo da fonteTaher, Chadi. "Calculating the parabolic chern character of a locally abelain parabolic bundle : the chern invariants for parabolic bundles at multiple points". Nice, 2011. http://www.theses.fr/2011NICE4013.
Texto completo da fonteDeolmi, Giulia. "Computational Parabolic Inverse Problems". Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3423351.
Texto completo da fonteIn questa tesi viene presentato un approccio numerico volto alla risoluzione di problemi inversi parabolici, basato sull'utilizzo di una parametrizzazione adattativa. L'algoritmo risolutivo viene descritto per due specici problemi: mentre il primo consiste nella stima della corrosione di una faccia incognita del dominio, il secondo ha come scopo la quanticazione di inquinante immesso in un fiume.
Bauwe, Anne, e Wilfried Grecksch. "A parabolic stochastic differential inclusion". Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501221.
Texto completo da fonteBaysal, Arzu. "Inverse Problems For Parabolic Equations". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605623/index.pdf.
Texto completo da fonteEberhardt, Jens Niklas [Verfasser], e Wolfgang [Akademischer Betreuer] Soergel. "Graded and geometric parabolic induction". Freiburg : Universität, 2017. http://d-nb.info/113557216X/34.
Texto completo da fonteLivros sobre o assunto "Parabolic"
Watson, N. A. Parabolic equations on an infinite strip. New York: M. Dekker, 1989.
Encontre o texto completo da fonteEscher, Joachim, Patrick Guidotti, Matthias Hieber, Piotr Mucha, Jan W. Prüss, Yoshihiro Shibata, Gieri Simonett, Christoph Walker e Wojciech Zajaczkowski, eds. Parabolic Problems. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4.
Texto completo da fonte1960-, Slovák Jan, ed. Parabolic geometries. Providence, R.I: American Mathematical Society, 2009.
Encontre o texto completo da fonteZheng, Songmu. Nonlinear parabolic equations and hyperbolic-parabolic coupled systems. Harlow, Essex, England: Longman, 1995.
Encontre o texto completo da fonteZheng, S. Nonlinear parabolic equations and hyperbolic-parabolic coupled systems. Harlow, Essex, England: Longman, 1995.
Encontre o texto completo da fonteQuittner, Prof Dr Pavol, e Prof Dr Philippe Souplet. Superlinear Parabolic Problems. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18222-9.
Texto completo da fonteDiBenedetto, Emmanuele. Degenerate Parabolic Equations. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0895-2.
Texto completo da fonteDiBenedetto, Emmanuele. Degenerate parabolic equations. New York: Springer-Verlag, 1993.
Encontre o texto completo da fonteKönig, Wolfgang. The Parabolic Anderson Model. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33596-4.
Texto completo da fonteBandle, Catherine, Henri Berestycki, Bernard Brighi, Alain Brillard, Michel Chipot, Jean-Michel Coron, Carlo Sbordone, Itai Shafrir, Vanda Valente e Giorgio Vergara Caffarelli, eds. Elliptic and Parabolic Problems. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7384-9.
Texto completo da fonteCapítulos de livros sobre o assunto "Parabolic"
Abels, Helmut. "Double Obstacle Limit for a Navier-Stokes/Cahn-Hilliard System". In Parabolic Problems, 1–20. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_1.
Texto completo da fonteEscher, Joachim, Martin Kohlmann e Boris Kolev. "Geometric Aspects of the Periodic μ-Degasperis-Procesi Equation". In Parabolic Problems, 193–209. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_10.
Texto completo da fonteFarwig, R., H. Kozono e H. Sohr. "Global Leray-Hopf Weak Solutions of the Navier-Stokes Equations with Nonzero Time-dependent Boundary Values". In Parabolic Problems, 211–32. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_11.
Texto completo da fonteFattorini, H. O. "Time and Norm Optimality of Weakly Singular Controls". In Parabolic Problems, 233–49. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_12.
Texto completo da fonteGaldi, Giovanni P., e Mads Kyed. "Asymptotic Behavior of a Leray Solution around a Rotating Obstacle". In Parabolic Problems, 251–66. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_13.
Texto completo da fonteGeissert, Matthias, e Horst Heck. "A Remark on Maximal Regularity of the Stokes Equations". In Parabolic Problems, 267–74. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_14.
Texto completo da fonteGuidetti, Davide. "On Linear Elliptic and Parabolic Problems in Nikol’skij Spaces". In Parabolic Problems, 275–300. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_15.
Texto completo da fonteGwiazda, Piotr, e Agnieszka Świerczewska Gwiazda. "Parabolic Equations in Anisotropic Orlicz Spaces with General N-functions". In Parabolic Problems, 301–11. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_16.
Texto completo da fonteHaller-Dintelmann, Robert, e Joachim Rehberg. "Maximal Parabolic Regularity for Divergence Operators on Distribution Spaces". In Parabolic Problems, 313–41. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_17.
Texto completo da fonteHishida, Toshiaki. "On the Relation Between the Large Time Behavior of the Stokes Semigroup and the Decay of Steady Stokes Flow at Infinity". In Parabolic Problems, 343–55. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_18.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Parabolic"
Wolf, Jörg. "A direct proof of the Caffarelli-Kohn-Nirenberg theorem". In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-34.
Texto completo da fonteWrzosek, Dariusz. "Chemotaxis models with a threshold cell density". In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-35.
Texto completo da fonteRaczyński, Andrzej. "Existence of solutions for a model of self-gravitating particles with external potential". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-18.
Texto completo da fonteNikolopoulos, C. V., e D. E. Tzanetis. "Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-16.
Texto completo da fonteOrpel, Aleksandra. "On the existence of multiple positive solutions for a certain class of elliptic problems". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-17.
Texto completo da fonteArkeryd, Leif. "On stationary kinetic systems of Boltzmann type and their fluid limits". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-1.
Texto completo da fonteGriepentrog, Jens A. "On the unique solvability of a nonlocal phase separation problem for multicomponent systems". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-10.
Texto completo da fonteGuerra, Ignacio. "Asymptotic self-similar blow-up for a model of aggregation". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-11.
Texto completo da fonteNikolopoulos, C. V., e D. E. Tzanetis. "Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-12.
Texto completo da fonteKuto, Kousuke, e Yoshio Yamada. "Multiple existence and stability of steady-states for a prey-predator system with cross-diffusion". In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-13.
Texto completo da fonteRelatórios de organizações sobre o assunto "Parabolic"
Author, Not Given. Solar parabolic trough. Office of Scientific and Technical Information (OSTI), janeiro de 2009. http://dx.doi.org/10.2172/1216669.
Texto completo da fonteAnthony Messina, Anthony Messina. The Parabolic Solar Trough. Experiment, setembro de 2012. http://dx.doi.org/10.18258/0050.
Texto completo da fonteSCIENCE AND TECHNOLOGY CORP HAMPTON VA. Analytic Parabolic Equation Solutions. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1989. http://dx.doi.org/10.21236/ada218588.
Texto completo da fonteHeirich, Alan, e Stephen Taylor. A Parabolic Load Balancing Method. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2006. http://dx.doi.org/10.21236/ada442993.
Texto completo da fonteKinoshita, G. Shenandoah parabolic dish solar collector. Office of Scientific and Technical Information (OSTI), janeiro de 1985. http://dx.doi.org/10.2172/5914387.
Texto completo da fonteStine, W. B. Progress in parabolic dish technology. Office of Scientific and Technical Information (OSTI), junho de 1989. http://dx.doi.org/10.2172/6110524.
Texto completo da fonteBeninga, K., R. Davenport, M. Featherby, J. Sandubrae e K. Walcott. Parabolic dish photovoltaic concentrator development. Office of Scientific and Technical Information (OSTI), maio de 1991. http://dx.doi.org/10.2172/5526853.
Texto completo da fonteHeirich, Alan, e Stephen Taylor. A Parabolic Theory of Load Balance. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2006. http://dx.doi.org/10.21236/ada443334.
Texto completo da fonteHolmes, Eleanor, Laurie Gainey e John Hanna. Upgrades to the Parabolic Equation Model. Fort Belvoir, VA: Defense Technical Information Center, março de 1988. http://dx.doi.org/10.21236/ada211899.
Texto completo da fonteBarrios, Amalia E. A Terrain Parabolic Equation Model (TPEM). Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1993. http://dx.doi.org/10.21236/ada264672.
Texto completo da fonte