Literatura científica selecionada sobre o tema "Palladium-catalyzed substitutive coupling"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Palladium-catalyzed substitutive coupling".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Palladium-catalyzed substitutive coupling"

1

Collet, Jurriën W., Thomas R. Roose, Bram Weijers, Bert U. W. Maes, Eelco Ruijter e Romano V. A. Orru. "Recent Advances in Palladium-Catalyzed Isocyanide Insertions". Molecules 25, n.º 21 (23 de outubro de 2020): 4906. http://dx.doi.org/10.3390/molecules25214906.

Texto completo da fonte
Resumo:
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Yuasa, Akihiro, Kazunori Nagao e Hirohisa Ohmiya. "Allylic cross-coupling using aromatic aldehydes as α-alkoxyalkyl anions". Beilstein Journal of Organic Chemistry 16 (7 de fevereiro de 2020): 185–89. http://dx.doi.org/10.3762/bjoc.16.21.

Texto completo da fonte
Resumo:
The allylic cross-coupling using aromatic aldehydes as α-alkoxyalkyl anions is described. The synergistic palladium/copper-catalyzed reaction of aromatic aldehydes, allylic carbonates, and a silylboronate produces the corresponding homoallylic alcohol derivatives. This process involves the catalytic formation of a nucleophilic α-silyloxybenzylcopper(I) species and the subsequent palladium-catalyzed allylic substitution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Campbell, Katie, Robert McDonald e Rik R. Tykwinski. "Porphyrinic assemblies of pyridine-containing macrocycles". Journal of Porphyrins and Phthalocyanines 09, n.º 11 (novembro de 2005): 794–802. http://dx.doi.org/10.1142/s1088424605000903.

Texto completo da fonte
Resumo:
Using a combination of palladium-catalyzed cross-coupling and copper-catalyzed homocoupling reactions, two pyridine-containing macrocycles with varying pendant substitution were constructed. Their synthesis and subsequent coordination to a ruthenium porphyrin is described. In addition to synthetic details and characterization, an examination of their electronic properties is provided.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Crawford, Sarah M., Craig A. Wheaton, Vinayak Mishra e Mark Stradiotto. "Probing the effect of donor-fragment substitution in Mor-DalPhos on palladium-catalyzed C–N and C–C cross-coupling reactivity". Canadian Journal of Chemistry 96, n.º 6 (junho de 2018): 578–86. http://dx.doi.org/10.1139/cjc-2017-0749.

Texto completo da fonte
Resumo:
The competitive catalytic screening of 18 known and newly prepared Mor-DalPhos ligand variants in the palladium-catalyzed cross-coupling of chlorobenzene with aniline, octylamine, morpholine, indole, ammonia, or acetone is presented, including ligands derived from the new secondary phosphine HP(Me2Ad)2 (Me2Ad = 3,5-dimethyladamantyl). Although triarylphosphine ancillary ligand variants performed poorly in these test reactions, ligands featuring either PAd2 or P(Me2Ad)2 donors (Ad = 1-adamantyl) gave rise to superior catalytic performance. Multiple Mor-DalPhos variants proved effective in cross-couplings involving aniline, octylamine, or morpholine; conversely, only a smaller subset of ligands proved useful in related cross-couplings of indole, ammonia, or acetone. In the case of the N-arylation of indole, a Mor-DalPhos ligand variant featuring ortho-disposed PAd2 and dimethylmorpholino donor fragments (L13) proved superior to all other ligands surveyed, including the parent ligand Mor-DalPhos (L5). Conversely, L5 was found to be superior to all other ligands in the palladium-catalyzed monoarylation of ammonia. Ligand L6 (i.e., the P(Me2Ad)2 variant of L5) proved superior to all other ligands in the monoarylation of acetone and, with the exception of indole N-arylation, was the most broadly useful of the Mor-DalPhos ligands surveyed herein.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Butenschön, Holger. "Haloferrocenes: Syntheses and Selected Reactions". Synthesis 50, n.º 19 (22 de agosto de 2018): 3787–808. http://dx.doi.org/10.1055/s-0037-1610210.

Texto completo da fonte
Resumo:
Although haloferrocenes constitute important starting materials for many ferrocene-derived products with importance in a variety of fields such as materials science, medicinal chemistry and catalysis, only relatively few haloferrocenes out of the large number of possible examples have been prepared so far. The first part of this review summarizes the syntheses of all the homo- and heterohaloferrocenes known up to date. The second part summarizes typical reactions of haloferrocenes, namely lithiation followed by trapping with an electrophile, copper-mediated halogen substitution, coupling with formation of diferrocenyl derivatives, ortho-lithiation followed by trapping with an electrophile, palladium-catalyzed coupling reactions and finally miscellaneous reactions.1 Introduction2 Homohaloferrocenes2.1 Fluoroferrocenes2.2 Chloroferrocenes2.3 Bromoferrocenes2.4 Iodoferrocenes3 Heterohaloferrocenes4 Selected Reactions of Haloferrocenes4.1 Lithiation Followed by Trapping with an Electrophile4.2 Copper-Mediated Halogen Substitution4.3 Coupling with Formation of Diferrocenyl Derivatives4.4 ortho-Lithiation of Haloferrocenes4.5 Palladium-Catalyzed Reactions of Haloferrocenes4.6 Miscellaneous Reactions of Haloferrocenes5 Conclusions
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Blessley, George, Patrick Holden, Matthew Walker, John M. Brown e Véronique Gouverneur. "Palladium-Catalyzed Substitution and Cross-Coupling of Benzylic Fluorides". Organic Letters 14, n.º 11 (18 de maio de 2012): 2754–57. http://dx.doi.org/10.1021/ol300977f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Le Bras, Jean, e Jacques Muzart. "Carbonylated Indoles from PdII-Catalyzed Intermolecular Reactions of Indolyl Cores". Synthesis 51, n.º 15 (2 de maio de 2019): 2871–90. http://dx.doi.org/10.1055/s-0037-1611478.

Texto completo da fonte
Resumo:
This review summarizes palladium-catalyzed carbonylation, transmetalation, and cross-coupling reactions that lead to carbonylated indoles from indoles and indolyl compounds. Special attention is drawn to procedures involving the C(sp2)–H substitution of free (NH)-indoles or (N-substituted)-indoles. Proposed mechanisms are described with, in some cases, personal comments.1 Introduction2 Carbonylative Reactions2.1 Indolyl Halides as Starting Substrates2.2 Indolyl Iodides as Intermediates2.3 Indolylborates as Intermediates2.4 C(sp2)–H Reactions2.4.1 Carboxylation2.4.2 Carbonylative Alkoxylation2.4.3 Carbonylative Arylation2.4.4 Carbonylative Alkenylation2.4.5 Carbonylative Alkylation2.4.6 Double Carbonylation3 Cross-Coupling of Stannyl- or Mercurioindoles4 Cross-Coupling of Indoles4.1 Aldehydes4.2 Alcohols4.3 α-Diketones4.4 α-Oxo Esters4.5 α-Oxocarboxylic Acids4.6 Nitriles4.7 Isocyanides4.8 Isothiocyanates and Isocyanates4.9 α-Aminocarbonyl Compounds4.10 Vinyl Ethers or Vinyl Amides4.11 Toluene and Substituted Toluenes4.12 Bromodichloromethane5 Conclusion
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mathias, Fanny, Youssef Kabri, Maxime Crozet e Patrice Vanelle. "Efficient Access to Original 6-Substituted 5-Nitro-2,3-dihydro­imidazo[2,1-b]oxazoles". Synthesis 49, n.º 12 (4 de abril de 2017): 2775–85. http://dx.doi.org/10.1055/s-0036-1588984.

Texto completo da fonte
Resumo:
A one-pot sequential intramolecular cyclization and Suzuki–Miyaura or Sonogashira reaction under microwave irradiation are reported in the 5-nitro-2,3-dihydroimidazo[2,1-b]oxazole series. The intramolecular cyclization of 1-(2,4-dibromo-5-nitro-1H-imidazol-1-yl)propan-2-ol between the hydroxyethyl group and the bromine atom at the 2-position is carried out first, followed by optimization and generalization of the Suzuki–Miyaura and Sonogashira cross-coupling reactions of the bromine atom at the 4-position. The various boronic acids and alkynyl derivatives used to perform these palladium-catalyzed cross-coupling reactions allowed to substitute the 6-position of 5-nitro-2,3-dihydroimidazo[2,1-b]oxazole compounds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Blessley, George, Patrick Holden, Matthew Walker, John M. Brown e Veronique Gouverneur. "ChemInform Abstract: Palladium-Catalyzed Substitution and Cross-Coupling of Benzylic Fluorides." ChemInform 43, n.º 40 (7 de setembro de 2012): no. http://dx.doi.org/10.1002/chin.201240025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kranke, Birgit, e Horst Kunz. "Stereoselective synthesis of chiral piperidine derivatives employing arabinopyranosylamine as the carbohydrate auxiliary". Canadian Journal of Chemistry 84, n.º 4 (1 de abril de 2006): 625–41. http://dx.doi.org/10.1139/v06-060.

Texto completo da fonte
Resumo:
Stereoselective synthesis of 2-substituted dehydropiperidinones and their further transformation to variously disubstituted piperidine derivatives was achieved employing D-arabinopyranosylamine as the stereodifferentiating carbohydrate auxiliary. A domino Mannich–Michael reaction of 1-methoxy-3-(trimethylsiloxy)butadiene (Danishefsky's diene) with O-pivaloylated arbinosylaldimines furnished N-arabinosyl dehydropiperidinones in high diastereoselectivity. Subsequent conjugate cuprate addition gave 2,6-cis-substituted piperidinones, while enolate alkylation furnished 2,3-trans-substituted dehydropiperidinones. Electrophilic substitution at the enamine structure afforded 5-nitro- and 5-halogen dehydropiperidinones of which the latter were applied in palladium-catalyzed coupling reactions. The absolute configuration of the obtained products was proven by NMR and X-ray structure analysis as well as by syntheses of the alkaloids (+)-coniine and (+)-dihydropinidine.Key words: piperidine alkaloids, carbohydrate auxiliary, domino Mannich–Michael reaction, conjugate cuprate and hydride addition, electrophilic substitution of enamines.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Palladium-catalyzed substitutive coupling"

1

Panza, Florian. "Fοnctiοnnalisatiοn directe οrthοgοnale métallο-catalysée des sites carbοne-hydrοgène des platefοrmes pharmacοlοgiques à cοeur imidazοisοindοle". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR11.

Texto completo da fonte
Resumo:
Depuis quelques décennies, les chimistes cherchent à toujours repousser les limites des stratégies de synthèse en développant des méthodologies toujours plus efficaces, plus simples et plus économes. Dans ce contexte, la fonctionnalisation directe de liaisons C—H catalysée par des métaux de transition constitue l’un des outils les plus puissants pour construire et fonctionnaliser des molécules simples mais aussi des édifices moléculaires de plus en plus complexes, avec une grande diversité de liaisons C—H, ces stratégies répondant également aux besoins actuels d’ouverture de l’espace chimique de fonctionnalisation de façon orthogonale. L’imidazoisoindole, hétérocycle tricyclique composé d’un noyau imidazole, est une plateforme pharmacologique très intéressante et présente des liaisons C—H avec des propriétés très diverses, mais aucune méthodologie de fonctionnalisation tardive de ces structures n’a encore été répertoriée dans la littérature. Ces travaux de thèse s’inscrivent dans ce contexte et présentent, (I) fort de l’expérience passée du laboratoire, une méthodologie robuste de synthèse à grande échelle d’imidazoisoindoles diversement substitués par activation C—H intramoléculaire pallado-catalysée ; (II) une extension des méthodologies standards de fonctionnalisation directe C2—H régiosélective de la série des 1,3-diazoles aux imidazo[5,1-a]isoindoles par catalyse coopérative palladium(0)-cuivre(I) ; (III) une méthodologie de mono-fonctionnalisation directe C(sp³)—H pallado-catalysée de la position benzylique des imidazo[2,1-a]isoindoles ; (IV) une étude préliminaire de la régiosélectivité observée lors de la borylation directe C(sp²)—H irido-catalysée des imidazo[2,1-a]isoindoles
For several decades, chemists constantly seek to push the limits of synthetic strategies by developing ever more efficient and more economical methodologies. In this context, transition metal-catalyzed direct functionalization of C—H bonds is one of the most powerful tools for constructing and funtionalizing simple molecules and ever more complex moieties, with a great diversity of C—H bonds. These strategies also answer the needs for the opening of the chemical space of functionalization. Imidazoisoindole, tricyclic heterocycle composed of an imidazole core, is a very interesting scaffold for biological activity and presents C—H bonds with very diverse properties, but late-functionalization methodology of these structures has yet to be listed in the literature. This work takes place in this context and presents, (I) based on past laboratory experience, a robust methodology to synthetize diversely substituted imidazoisoindoles at high scale by palladium-catalyzed intramolecular C—H activation ; (II) an extension of standard directC2—H functionalization of 1,3-diazole moieties applied to imidazo[5,1-a]isoindoles with a palladium(0)-copper(I) cooperative catalysis ; (III) a new methodology of direct C(sp³)—H palladium-catalyzed mono-functionalization at benzylic position of imidazo[2,1-a]isoindoles ; (IV) a preliminary study of the observed regioselectivity of iridium-catalyzed direct C(sp²)—H borylation of imidazo[2,1-a]isoindoles
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hagelin, Helena. "Palladium-catalyzed aromatic coupling and allylic substitution : an experimental and theoretical study /". Stockholm, 1999. http://www.lib.kth.se/abs99/hage0528.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Dehbi, Oussama. "Synthèse de nouveaux dérivés pyridopyrimidiniques, imidazopyridiniques et imidazopyridaziniques : évaluation de leurs propriétés biologiques". Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2078/document.

Texto completo da fonte
Resumo:
Les produits appartenant à la famille des pyridopyrimidines sont caractérisés par leur intense utilisation dans le domaine pharmacologique, ce qui a poussé différentes équipes de recherche, de par le monde, à les étudier chimiquement et biologiquement. Dans ce travail, nous nous sommes intéressés au groupe des pyridopyrimidines et, plus particulièrement, à l’isomère le moins décrit dans la littérature, à savoir les pyrido[3,2-d]pyrimidines. Les composés ciblés sont synthétisés à partir de la 2,7-dichloropyrido[3,2-d]pyrimidine, via des substitutions nucléophiles aromatiques et des couplages pallado-catalysés et ce, dans le but d’obtenir de puissants inhibiteurs de kinases. Ce but a été atteint puisqu’en effet plusieurs des molécules élaborées inhibent les kinases testées avec des concentrations de l’ordre du nanomolaire. Des résultats pharmacologiques aussi concluants nous ont amenés à étendre nos études à d’autres pyridopyrimidines, à savoir les pyrido[2,3-d]pyrimidines ainsi qu’à d’autres types de bicycles polyazotés, en l’occurrence les imidazo[1,2-a]pyridines et les imidazo[1,2-b]pyridazines
Products belonging to the pyridopyrimidine family are characterized by their intense use in pharmacology. The increase of interest for this heterocyclic scaffold prompted different research teams around the world to study their chemically and biologically properties. In this work, we are interested in the functionalization of pyridopyrimidines and, more specifically, of the less described regioisomer, namely pyrido[3,2-d]pyrimidines. The target compounds were synthesized from 2,7-dichloropyrido[3,2-d]pyrimidine via nucleophilic aromatic substitution and palladium-catalyzed couplings and, in order to obtain potent kinases inhibitors. Our goal has been achieved with several elaborate molecules. These bioactive compounds inhibit kinases such as Cyclin Dependant Kinases (CDK), Glycogen Synthase 3 (GSK3) or Dual specificity tYRosine-phosphorylation-regulated Kinase 1A (DYRK1A) in the nanomolar range. These biological targets are mainly involved in degenerative process or down syndrome. These pharmacological results led us to extend our studies to other pyridopyrimidines, namely pyrido[2,3-d]pyrimidines as well as other types of polynitrogenated bicycles, namely imidazo[1,2- a]pyridine and imidazo[1,2-b]pyridazine
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Palladium-catalyzed substitutive coupling"

1

Sloane, S. E., K. T. Behlow, M. D. Mills e J. R. Clark. "46.5.7 Three-Component Coupling Reactions that Generate 1,3-Dienes". In Knowledge Updates 2022/2. Stuttgart: Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/sos-sd-146-00001.

Texto completo da fonte
Resumo:
AbstractThree-component coupling reactions have emerged as an atom-economical approach to generate a wide variety of new molecular architectures containing a 1,3-diene. While a variety of methods exist to generate 1,3-dienes, three-component coupling reactions permit stereoselective access to unique substitution patterns within this privileged functionality. Dienes are ubiquitous in natural products and bioactive molecules, and also serve as important building blocks in organic synthesis. Transition-metal-catalyzed three-component couplings that employ a nickel, copper, palladium, ruthenium, palladium/copper, chromium, or indium catalyst can provide access to a diverse array of 1,3-dienes. Organocatalytic three-component coupling reactions offer an alternate route to 1,3-dienes without the use of a metal catalyst. The multiple synthetic methods to generate 1,3-dienes using a three-component coupling approach bring diversity to the organic chemistry toolbox, and these methods are discussed in this chapter.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

"Synthetic Methods for Diaryl Ether Preparation Using Arylating Reagents". In Methodologies in Ether Synthesis, 78–126. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781837675166-00078.

Texto completo da fonte
Resumo:
Diaryl ethers are one of the most essential intermediates for organic synthesis in the fields of medicine, agrochemistry, and polymer sciences. There are many naturally occurring biologically active compounds bearing a diaryl ether group including the antibiotic vancomycin, perrottetines, and chloropeptins (anti-HIV agents). This chapter presents efficient and practical synthetic methods for the synthesis of diaryl ethers including Ullmann-type reactions of aryl halides which are achieved using copper catalysts, Buchwald–Hartwig cross-couplings of aryl halides in the presence of palladium catalytic systems, and Chan–Lam cross-couplings of phenols with arylboronic acids catalyzed by copper, nucleophilic aromatic substitution, the benzyne mechanism, SNAr additions to metal-arene complexes, oxidative coupling reactions, and Fischer chromium carbene mediated benzannulation. The main objective of this section is to review the procedures used to synthesize diaryl ethers with special emphasis on recently reported catalytic procedures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia