Artigos de revistas sobre o tema "P3HT polymer"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "P3HT polymer".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kubota, Mayara, Ricardo Fernandes e Santana de. "Electrical, optical and structural characterization of interfaces containing poly(3-alkylthiophenes)(P3ATs) and polydiphenylamine on ITO/TiO2: Interaction between P3ATs polymeric segments and TiO2". Journal of the Serbian Chemical Society, n.º 00 (2024): 24. http://dx.doi.org/10.2298/jsc231125024k.
Texto completo da fonteSairam, Koneti, e A. Sivagami. "Comparison the Electrical Characteristics of PEDOT: PSS Tandem Solar Cell and P3HT Tandem Solar Cell by Varying Thickness". Alinteri Journal of Agriculture Sciences 36, n.º 1 (29 de junho de 2021): 674–81. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21095.
Texto completo da fonteChen, Jean Hong, Jian Yi Li, Lung Chuan Chen e Ching Iuan Su. "Morphology and Microstructure of Aggregates and Gelation Behaviour of Poly(3-hexylthiophene) in Xylene Solution". Applied Mechanics and Materials 479-480 (dezembro de 2013): 115–20. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.115.
Texto completo da fonteGarcía-Escobar, C. H., M. E. Nicho, Hailin Hu, G. Alvarado-Tenorio, P. Altuzar-Coello, G. Cadenas-Pliego e D. Hernández-Martínez. "Effect of Microwave Radiation on the Synthesis of Poly(3-hexylthiophene) and the Subsequent Photovoltaic Performance of CdS/P3HT Solar Cells". International Journal of Polymer Science 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/1926972.
Texto completo da fonteOrlova, M., S. Didenko, D. Saranin, O. Rabinovich, A. Panichkin e I. Borzykh. "New Polymer Systems for Use in Organic Photovoltaics". International Journal of Nanoscience 17, n.º 05 (outubro de 2018): 1750022. http://dx.doi.org/10.1142/s0219581x17500223.
Texto completo da fonteNagamatsu, Shuichi, Masataka Ishida, Shougo Miyajima e Shyam S. Pandey. "P3HT Nanofibrils Thin-Film Transistors by Adsorbing Deposition in Suspension". Materials 12, n.º 21 (5 de novembro de 2019): 3643. http://dx.doi.org/10.3390/ma12213643.
Texto completo da fonteArrigoni, Alessia, Luigi Brambilla, Chiara Castiglioni e Chiara Bertarelli. "Conducting Electrospun Nanofibres: Monitoring of Iodine Doping of P3HT through Infrared (IRAV) and Raman (RaAV) Polaron Spectroscopic Features". Nanomaterials 12, n.º 23 (4 de dezembro de 2022): 4308. http://dx.doi.org/10.3390/nano12234308.
Texto completo da fonteKyokunzire, Proscovia, Ganghoon Jeong, Seo Young Shin, Hyeong Jun Cheon, Eunsol Wi, Minhong Woo, Trang Thi Vu e Mincheol Chang. "Enhanced Nitric Oxide Sensing Performance of Conjugated Polymer Films through Incorporation of Graphitic Carbon Nitride". International Journal of Molecular Sciences 24, n.º 2 (6 de janeiro de 2023): 1158. http://dx.doi.org/10.3390/ijms24021158.
Texto completo da fonteŠvrček, Vladimir. "Excitation energy transfer in conjugated polymer/silicon nanocrystal-based bulk heterojunctions". Pure and Applied Chemistry 82, n.º 11 (6 de agosto de 2010): 2121–35. http://dx.doi.org/10.1351/pac-con-09-12-01.
Texto completo da fonteWakahara, Takatsugu, Kun’ichi Miyazawa, Osamu Ito e Nobutaka Tanigaki. "Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application". Journal of Nanomaterials 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/2895850.
Texto completo da fonteChen, Jung-Yao, Chien-You Su, Chau-Hsien Hsu, Yi-Hua Zhang, Qin-Cheng Zhang, Chia-Ling Chang, Chi-Chung Hua e Wen-Chang Chen. "Solvent Effects on Morphology and Electrical Properties of Poly(3-hexylthiophene) Electrospun Nanofibers". Polymers 11, n.º 9 (14 de setembro de 2019): 1501. http://dx.doi.org/10.3390/polym11091501.
Texto completo da fonteKonstantinova, Elizaveta A., Alexander S. Vorontsov e Pavel A. Forsh. "Investigation of Photoelectron Properties of Polymer Films with Silicon Nanoparticles". Surfaces 2, n.º 2 (13 de maio de 2019): 387–94. http://dx.doi.org/10.3390/surfaces2020028.
Texto completo da fonteMulderig, Andrew J., Yan Jin, Fei Yu, Jong Keum, Kunlun Hong, James F. Browning, Gregory Beaucage, Gregory S. Smith e Vikram K. Kuppa. "Determination of active layer morphology in all-polymer photovoltaic cells". Journal of Applied Crystallography 50, n.º 5 (18 de agosto de 2017): 1289–98. http://dx.doi.org/10.1107/s1600576717010457.
Texto completo da fonteBorazan, Ismail, Yasin Altin, Ali Demir e Ayse Celik Bedeloglu. "Characterization of organic solar cells using semiconducting polymers with different bandgaps". Journal of Polymer Engineering 39, n.º 7 (26 de julho de 2019): 636–41. http://dx.doi.org/10.1515/polyeng-2019-0052.
Texto completo da fonteSerrano-Garcia, William, Seeram Ramakrishna e Sylvia W. Thomas. "Electrospinning Technique for Fabrication of Coaxial Nanofibers of Semiconductive Polymers". Polymers 14, n.º 23 (22 de novembro de 2022): 5073. http://dx.doi.org/10.3390/polym14235073.
Texto completo da fonteKim, Na Kyung, Jin Woo Bae, Hyeon-Ki Jang, Jong-Chan Lee, Kigook Song, Byung-Soo Kim, In Jun Park, Jong-Wook Ha, Soo-Bok Lee e Eun-Ho Sohn. "Enhanced biocompatibility in poly(3-hexylthiophene)-based organic thin-film transistors upon blending with poly(2-(2-acetoxyacetyl)ethyl methacrylate)". RSC Advances 6, n.º 20 (2016): 16540–47. http://dx.doi.org/10.1039/c5ra21465c.
Texto completo da fonteDarmawan, Muh Iman, Cari Cari, Agus Supriyanto, Hadian Mandala Putra e Fathurrahman Fathurrahman. "POLY ORGANIC POLYMER (3-HEXYLTHIOPHENE) P3HT as LIGHT SENSITIVITY in PROTOTYPE DYE-SENSITIZED SOLAR CELLS (DSSC)". Indonesian Physical Review 4, n.º 2 (6 de junho de 2021): 104. http://dx.doi.org/10.29303/ipr.v4i2.84.
Texto completo da fonteClark, Sean M., Jonathan A. Campbell e David A. Lewis. "Synthesis and Characterisation of High Fullerene Content Polymers and Their Use in Organic Photovoltaic Devices". Australian Journal of Chemistry 68, n.º 11 (2015): 1767. http://dx.doi.org/10.1071/ch15284.
Texto completo da fonteNemani, Srinivasa Kartik, e Hossein Sojoudi. "Barrier Performance of CVD Graphene Films Using a Facile P3HT Thin Film Optical Transmission Test". Journal of Nanomaterials 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/9681432.
Texto completo da fonteLee, Sooyong, Hwajeong Kim e Youngkyoo Kim. "Hole Injection Role of p-Type Conjugated Polymer Nanolayers in Phosphorescent Organic Light-Emitting Devices". Electronics 10, n.º 18 (17 de setembro de 2021): 2283. http://dx.doi.org/10.3390/electronics10182283.
Texto completo da fonteGáspár, Szilveszter, Tiziana Ravasenga, Raluca-Elena Munteanu, Sorin David, Fabio Benfenati e Elisabetta Colombo. "Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces". Materials 14, n.º 16 (23 de agosto de 2021): 4761. http://dx.doi.org/10.3390/ma14164761.
Texto completo da fonteSCHNEIDER-POLLACK, SAMANTHA, MONA DOSHI, JEFF GELDMEIER e ANDRE J. GESQUIERE. "P3HT CHAIN MORPHOLOGY IN COMPOSITE P3HT/PCBM NANOPARTICLES STUDIED BY SINGLE PARTICLE FLUORESCENCE EXCITATION POLARIZATION SPECTROSCOPY". Biophysical Reviews and Letters 08, n.º 03n04 (dezembro de 2013): 243–53. http://dx.doi.org/10.1142/s1793048013500082.
Texto completo da fonteJarosz, Tomasz, Kinga Kepska, Przemyslaw Ledwon, Marcin Procek, Wojciech Domagala e Agnieszka Stolarczyk. "Poly(3-hexylthiophene) Grafting and Molecular Dilution: Study of a Class of Conjugated Graft Copolymers". Polymers 11, n.º 2 (24 de janeiro de 2019): 205. http://dx.doi.org/10.3390/polym11020205.
Texto completo da fonteRosmani, C. H., A. Z. Zainurul, M. Rusop e S. Abdullah. "The Optical and Electrical Properties of Polymer Poly (3-Hexylthiophene) P3HT by Heat Treatment". Advanced Materials Research 1109 (junho de 2015): 419–23. http://dx.doi.org/10.4028/www.scientific.net/amr.1109.419.
Texto completo da fonteMusumeci, A. W., G. G. Silva, J. W. Liu, L. Rintoul, E. R. Waclawik e G. A. George. "MWNT Polymer Nanocomposites Based on P3HT". Advanced Materials Research 29-30 (novembro de 2007): 291–94. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.291.
Texto completo da fonteKim, Youn, Yeon Ju Kwon, Seungwan Ryu, Cheol Jin Lee e Jea Uk Lee. "Preparation of Nanocomposite-Based High Performance Organic Field Effect Transistor via Solution Floating Method and Mechanical Property Evaluation". Polymers 12, n.º 5 (2 de maio de 2020): 1046. http://dx.doi.org/10.3390/polym12051046.
Texto completo da fonteHernández-Martínez, Diego, Ulises León-Silva e Maria Elena Nicho. "Corrosion protection of steel by poly(3-hexylthiophene) polymer blends". Anti-Corrosion Methods and Materials 62, n.º 4 (1 de junho de 2015): 229–40. http://dx.doi.org/10.1108/acmm-12-2013-1331.
Texto completo da fonteNassir, Lamis Faaz, e Mohammed Hadi Shinen. "Study of Electrical Properties of PMMA/P3HT Films". NeuroQuantology 20, n.º 3 (26 de março de 2022): 47–50. http://dx.doi.org/10.14704/nq.2022.20.3.nq22039.
Texto completo da fontePark, Byoungnam. "Polymer-Chain Aggregation-induced Electrical Gating at the H- and J-aggregate P3HT". Korean Journal of Metals and Materials 62, n.º 6 (5 de junho de 2024): 455–63. http://dx.doi.org/10.3365/kjmm.2024.62.6.455.
Texto completo da fonteAgee, Alec, Thomas Mark Gill, Gordon Pace, Rachel Segalman e Ariel Furst. "Electrochemical Characterization of Biomolecular Electron Transfer at Conductive Polymer Interfaces". Journal of The Electrochemical Society 170, n.º 1 (1 de janeiro de 2023): 016509. http://dx.doi.org/10.1149/1945-7111/acb239.
Texto completo da fonteJeong, Ganghoon, Seo Young Shin, Proscovia Kyokunzire, Hyeong Jun Cheon, Eunsol Wi, Minhong Woo e Mincheol Chang. "High-Performance Nitric Oxide Gas Sensors Based on an Ultrathin Nanoporous Poly(3-hexylthiophene) Film". Biosensors 13, n.º 1 (13 de janeiro de 2023): 132. http://dx.doi.org/10.3390/bios13010132.
Texto completo da fonteSmith, Matthew K., Thomas L. Bougher, Kyriaki Kalaitzidou e Baratunde A. Cola. "Melt-processed P3HT and PE Polymer Nanofiber Thermal Conductivity". MRS Advances 2, n.º 58-59 (2017): 3619–26. http://dx.doi.org/10.1557/adv.2017.499.
Texto completo da fonteKan, Zhipeng, Letizia Colella, Eleonora V. Canesi, Alexei Vorobiev, Vasyl Skrypnychuk, Giancarlo Terraneo, David R. Barbero, Chiara Bertarelli, Roderick C. I. MacKenzie e Panagiotis E. Keivanidis. "Charge transport control via polymer polymorph modulation in ternary organic photovoltaic composites". Journal of Materials Chemistry A 4, n.º 4 (2016): 1195–201. http://dx.doi.org/10.1039/c5ta08120c.
Texto completo da fonteAbbas, Hayder Abdulmeer, Wissem Cheikrohou Koubaa e Estabraq Talib Abdullah. "Synthesis, Characterization and Functionalization of P3HT-CNT Nanocomposite Thin Films with Doped Ag2O". East European Journal of Physics, n.º 1 (5 de março de 2024): 342–54. http://dx.doi.org/10.26565/2312-4334-2024-1-32.
Texto completo da fonteHuang, Ping-Tsung, Yi-Hao Chen, Bo-Yu Lin e Wei-Ping Chuang. "Homogenized Poly(3-hexylthiophene)/Methanofullerene Film by Addition of End-Functionalized Compatibilizer and Its Application to Polymer Solar Cells". International Journal of Photoenergy 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/762532.
Texto completo da fonteFatin Hana Naning, Syed Abdul Malik e Hafizul Fahri Hanafi. "Isotherm Behaviour of P3OT, P3HT and PCBM Langmuir Layer on Ionic Subphase". Journal of Advanced Research in Applied Sciences and Engineering Technology 29, n.º 3 (8 de fevereiro de 2023): 168–74. http://dx.doi.org/10.37934/araset.29.3.168174.
Texto completo da fonteD S, Suresh, M. Vandana, S. Veeresh, H. Ganesh, Y. S. Nagaraju, H. Vijeth, M. Basappa e H. Devendrappa. "Low Cost Synthesis and Characterization of Donor P3HT Polymer for Fabrication of Organic Solar Cell". IOP Conference Series: Materials Science and Engineering 1221, n.º 1 (1 de março de 2022): 012060. http://dx.doi.org/10.1088/1757-899x/1221/1/012060.
Texto completo da fonteJarosz, Tomasz, Karolina Gebka, Kinga Kepska, Mieczyslaw Lapkowski, Przemyslaw Ledwon, Pawel Nitschke e Agnieszka Stolarczyk. "Investigation of the Effects of Non-Conjugated Co-Grafts on the Spectroelectrochemical and Photovoltaic Properties of Novel Conjugated Graft Copolymers Based on Poly(3-hexylthiophene)". Polymers 10, n.º 10 (25 de setembro de 2018): 1064. http://dx.doi.org/10.3390/polym10101064.
Texto completo da fonteMkawi, E. M., Y. Al-Hadeethi, R. S. Bazuhair, A. S. Yousef, E. Shalaan, B. Arkook, A. M. Abdeldaiem, Rahma Almalki e E. Bekyarova. "Optimization of Sb2S3 Nanocrystal Concentrations in P3HT: PCBM Layers to Improve the Performance of Polymer Solar Cells". Polymers 13, n.º 13 (29 de junho de 2021): 2152. http://dx.doi.org/10.3390/polym13132152.
Texto completo da fontePark, Min Soo, Alem Araya Meresa, Chan-Min Kwon e Felix Sunjoo Kim. "Selective Wet-Etching of Polymer/Fullerene Blend Films for Surface- and Nanoscale Morphology-Controlled Organic Transistors and Sensitivity-Enhanced Gas Sensors". Polymers 11, n.º 10 (15 de outubro de 2019): 1682. http://dx.doi.org/10.3390/polym11101682.
Texto completo da fonteWang, Wen, Lu Ying Liang, Wei Wang, He Min Zheng, Zong Xiong Xu, Yong Kun Lei, Hong Yu Lin e Qi Dan Ling. "The Preparation of Higher Ordered Poly(3-hexylthiophene) by Oxidative Method". Advanced Materials Research 1004-1005 (agosto de 2014): 272–76. http://dx.doi.org/10.4028/www.scientific.net/amr.1004-1005.272.
Texto completo da fonteGuo, Shaowen, Yaguang Lu, Binghua Wang, Changyu Shen, Jingbo Chen, Günter Reiter e Bin Zhang. "Controlling the pore size in conjugated polymer films via crystallization-driven phase separation". Soft Matter 15, n.º 14 (2019): 2981–89. http://dx.doi.org/10.1039/c9sm00370c.
Texto completo da fonteAMALIA, Fia, Ari Dwi NUGRAHENI e Sholihun SHOLIHUN. "First-principles study on structural and electronic properties of P3HT-graphene". Journal of Metals, Materials and Minerals 34, n.º 1 (20 de março de 2024): 1833. http://dx.doi.org/10.55713/jmmm.v34i1.1833.
Texto completo da fonteBorzdun, Natalia, Artyom Glova, Sergey Larin e Sergey Lyulin. "Influence of Asphaltene Modification on Structure of P3HT/Asphaltene Blends: Molecular Dynamics Simulations". Nanomaterials 12, n.º 16 (20 de agosto de 2022): 2867. http://dx.doi.org/10.3390/nano12162867.
Texto completo da fonteUvarov, Mikhail N., Elena S. Kobeleva, Konstantin M. Degtyarenko, Vladimir A. Zinovyev, Alexander A. Popov, Evgeny A. Mostovich e Leonid V. Kulik. "Fast Recombination of Charge-Transfer State in Organic Photovoltaic Composite of P3HT and Semiconducting Carbon Nanotubes Is the Reason for Its Poor Photovoltaic Performance". International Journal of Molecular Sciences 24, n.º 4 (17 de fevereiro de 2023): 4098. http://dx.doi.org/10.3390/ijms24044098.
Texto completo da fonteBeatrup, Daniel, Jessica Wade, Laure Biniek, Hugo Bronstein, Michael Hurhangee, Ji-Seon Kim, Iain McCulloch e James R. Durrant. "Polaron stability in semiconducting polymer neat films". Chem. Commun. 50, n.º 92 (2014): 14425–28. http://dx.doi.org/10.1039/c4cc06193d.
Texto completo da fonteSittishoktram, M., Udom Asawapirom e Tanakorn Osotchan. "Optical and Electrical Properties of Modified Polythiophene with Tetrafluorobenzene Thin Film". Advanced Materials Research 93-94 (janeiro de 2010): 574–77. http://dx.doi.org/10.4028/www.scientific.net/amr.93-94.574.
Texto completo da fonteBao, Hailian, Xiaodi Chen, Rui Yuan, Chao Zhang e Shiai Xu. "A dual polymer composite of poly(3-hexylthiophene) and poly(3,4-ethylenedioxythiophene) hybrid surface heterojunction with g-C3N4 for enhanced photocatalytic hydrogen evolution". RSC Advances 11, n.º 52 (2021): 32671–79. http://dx.doi.org/10.1039/d1ra05527e.
Texto completo da fonteBao, Hailian, Xiaodi Chen, Rui Yuan, Chao Zhang e Shiai Xu. "A dual polymer composite of poly(3-hexylthiophene) and poly(3,4-ethylenedioxythiophene) hybrid surface heterojunction with g-C3N4 for enhanced photocatalytic hydrogen evolution". RSC Advances 11, n.º 52 (2021): 32671–79. http://dx.doi.org/10.1039/d1ra05527e.
Texto completo da fonteZhang, Yifeng, Fang Mao, Hongjian Yan, Kewei Liu, Hongmei Cao, Jiagang Wu e Dingquan Xiao. "A polymer–metal–polymer–metal heterostructure for enhanced photocatalytic hydrogen production". Journal of Materials Chemistry A 3, n.º 1 (2015): 109–15. http://dx.doi.org/10.1039/c4ta04636f.
Texto completo da fonte