Siga este link para ver outros tipos de publicações sobre o tema: P-adic logarithmic forms.

Artigos de revistas sobre o tema "P-adic logarithmic forms"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 17 melhores artigos de revistas para estudos sobre o assunto "P-adic logarithmic forms".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Yu, Kunrui. "p-adic logarithmic forms and group varieties II". Acta Arithmetica 89, n.º 4 (1999): 337–78. http://dx.doi.org/10.4064/aa-89-4-337-378.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

YU, KUNRUI. "P-adic logarithmic forms and group varieties I". Journal für die reine und angewandte Mathematik (Crelles Journal) 1998, n.º 502 (15 de setembro de 1998): 29–92. http://dx.doi.org/10.1515/crll.1998.090.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

GROSSEKLONNE, E. "Sheaves of bounded p-adic logarithmic differential forms". Annales Scientifiques de l’École Normale Supérieure 40, n.º 3 (maio de 2007): 351–86. http://dx.doi.org/10.1016/j.ansens.2007.04.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Iovita, Adrian, e Michael Spiess. "Logarithmic differential forms on p -adic symmetric spaces". Duke Mathematical Journal 110, n.º 2 (novembro de 2001): 253–78. http://dx.doi.org/10.1215/s0012-7094-01-11023-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Yu, Kunrui. "p-adic logarithmic forms and a problem of Erdős". Acta Mathematica 211, n.º 2 (2013): 315–82. http://dx.doi.org/10.1007/s11511-013-0106-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

LE, DANIEL, SHELLY MANBER e SHRENIK SHAH. "ON p-ADIC PROPERTIES OF TWISTED TRACES OF SINGULAR MODULI". International Journal of Number Theory 06, n.º 03 (maio de 2010): 625–53. http://dx.doi.org/10.1142/s1793042110003101.

Texto completo da fonte
Resumo:
We prove that logarithmic derivatives of certain twisted Hilbert class polynomials are holomorphic modular forms modulo p of filtration p + 1. We derive p-adic information about twisted Hecke traces and Hilbert class polynomials. In this framework, we formulate a precise criterion for p-divisibility of class numbers of imaginary quadratic fields in terms of the existence of certain cusp forms modulo p. We explain the existence of infinite classes of congruent twisted Hecke traces with fixed discriminant in terms of the factorization of the associated Hilbert class polynomial modulo p. Finally, we provide a new proof of a theorem of Ogg classifying those p for which all supersingular j-invariants modulo p lie in Fp.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yu, Kunrui. "Linear forms in p-adic logarithms". Acta Arithmetica 53, n.º 2 (1989): 107–86. http://dx.doi.org/10.4064/aa-53-2-107-186.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lauder, Alan G. B. "Computations with classical and p-adic modular forms". LMS Journal of Computation and Mathematics 14 (1 de agosto de 2011): 214–31. http://dx.doi.org/10.1112/s1461157011000155.

Texto completo da fonte
Resumo:
AbstractWe present p-adic algorithms for computing Hecke polynomials and Hecke eigenforms associated to spaces of classical modular forms, using the theory of overconvergent modular forms. The algorithms have a running time which grows linearly with the logarithm of the weight and are well suited to investigating the dimension variation of certain p-adically defined spaces of classical modular forms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

BUGEAUD, YANN. "Linear forms in p-adic logarithms and the Diophantine equation formula here". Mathematical Proceedings of the Cambridge Philosophical Society 127, n.º 3 (novembro de 1999): 373–81. http://dx.doi.org/10.1017/s0305004199003692.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

HIRATA-KOHNO, Noriko, e Rina TAKADA. "LINEAR FORMS IN TWO ELLIPTIC LOGARITHMS IN THE p-ADIC CASE". Kyushu Journal of Mathematics 64, n.º 2 (2010): 239–60. http://dx.doi.org/10.2206/kyushujm.64.239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

BUGEAUD, YANN. "Effective irrationality measures for real and p-adic roots of rational numbers close to 1, with an application to parametric families of Thue–Mahler equations". Mathematical Proceedings of the Cambridge Philosophical Society 164, n.º 1 (27 de setembro de 2016): 99–108. http://dx.doi.org/10.1017/s0305004116000864.

Texto completo da fonte
Resumo:
AbstractWe show how the theory of linear forms in two logarithms allows one to get very good effective irrationality measures for nth roots of rational numbers a/b, when a is very close to b. We give a p-adic analogue of this result under the assumption that a is p-adically very close to b, that is, that a large power of p divides a−b. As an application, we solve completely certain families of Thue–Mahler equations. Our results illustrate, admittedly in a very special situation, the strength of the known estimates for linear forms in logarithms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Çokoksen, Tuba, e Murat Alan. "On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai's Conjecture". Journal of New Theory, n.º 47 (30 de junho de 2024): 72–84. http://dx.doi.org/10.53570/jnt.1479551.

Texto completo da fonte
Resumo:
This study proves that the Diophantine equation $\left(9d^2+1\right)^x+\left(16d^2-1\right)^y=(5d)^z$ has a unique positive integer solution $(x,y,z)=(1,1,2)$, for all $d>1$. The proof employs elementary number theory techniques, including linear forms in two logarithms and Zsigmondy's Primitive Divisor Theorem, specifically when $d$ is not divisible by $5$. In cases where $d$ is divisible by $5$, an alternative method utilizing linear forms in p-adic logarithms is applied.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Yu, Kunrui. "P-adic logarithmic forms and group varieties III". Forum Mathematicum 19, n.º 2 (20 de janeiro de 2007). http://dx.doi.org/10.1515/forum.2007.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

PHAM, DUC HIEP. "WEIERSTRASS ZETA FUNCTIONS AND p-ADIC LINEAR RELATIONS". Bulletin of the Australian Mathematical Society, 11 de março de 2024, 1–10. http://dx.doi.org/10.1017/s0004972724000091.

Texto completo da fonte
Resumo:
Abstract We discuss the p-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the p-adic domain. These results are extensions of the p-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre p-adique de variétés de groupe’, Invent. Math.40(2) (1977), 171–193].
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Chim, Kwok Chi. "Lower bounds for linear forms in two p-adic logarithms". Journal of Number Theory, agosto de 2024. http://dx.doi.org/10.1016/j.jnt.2024.07.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Heuer, Ben. "Line bundles on rigid spaces in the v-topology". Forum of Mathematics, Sigma 10 (2022). http://dx.doi.org/10.1017/fms.2022.72.

Texto completo da fonte
Resumo:
Abstract For a smooth rigid space X over a perfectoid field extension K of $\mathbb {Q}_p$ , we investigate how the v-Picard group of the associated diamond $X^{\diamondsuit }$ differs from the analytic Picard group of X. To this end, we construct a left-exact ‘Hodge–Tate logarithm’ sequence $$\begin{align*}0\to \operatorname{Pic}_{\mathrm{an}}(X)\to \operatorname{Pic}_v(X^{\diamondsuit})\to H^0(X,\Omega_X^1)\{-1\}. \end{align*}$$ We deduce some analyticity criteria which have applications to p-adic modular forms. For algebraically closed K, we show that the sequence is also right-exact if X is proper or one-dimensional. In contrast, we show that, for the affine space $\mathbb {A}^n$ , the image of the Hodge–Tate logarithm consists precisely of the closed differentials. It follows that, up to a splitting, v-line bundles may be interpreted as Higgs bundles. For proper X, we use this to construct the p-adic Simpson correspondence of rank one.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

DARMON, HENRI, ALAN LAUDER e VICTOR ROTGER. "STARK POINTS AND -ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE". Forum of Mathematics, Pi 3 (2015). http://dx.doi.org/10.1017/fmp.2015.7.

Texto completo da fonte
Resumo:
Let$E$be an elliptic curve over$\mathbb{Q}$, and let${\it\varrho}_{\flat }$and${\it\varrho}_{\sharp }$be odd two-dimensional Artin representations for which${\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp }$is self-dual. The progress on modularity achieved in recent decades ensures the existence of normalized eigenforms$f$,$g$, and$h$of respective weights two, one, and one, giving rise to$E$,${\it\varrho}_{\flat }$, and${\it\varrho}_{\sharp }$via the constructions of Eichler and Shimura, and of Deligne and Serre. This article examines certain$p$-adic iterated integralsattached to the triple$(f,g,h)$, which are$p$-adic avatars of the leading term of the Hasse–Weil–Artin$L$-series$L(E,{\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp },s)$when it has a double zero at the centre. A formula is proposed for these iterated integrals, involving the formal group logarithms of global points on$E$—referred to asStark points—which are defined over the number field cut out by${\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp }$. This formula can be viewed as an elliptic curve analogue of Stark’s conjecture on units attached to weight-one forms. It is proved when$g$and$h$are binary theta series attached to a common imaginary quadratic field in which$p$splits, by relating the arithmetic quantities that arise in it to elliptic units and Heegner points. Fast algorithms for computing$p$-adic iterated integrals based on Katz expansions of overconvergent modular forms are then exploited to gather numerical evidence in more exotic scenarios, encompassing Mordell–Weil groups over cyclotomic fields, ring class fields of real quadratic fields (a setting which may shed light on the theory of Stark–Heegner points attached to Shintani-type cycles on${\mathcal{H}}_{p}\times {\mathcal{H}}$), and extensions of$\mathbb{Q}$with Galois group a central extension of the dihedral group$D_{2n}$or of one of the exceptional subgroups$A_{4}$,$S_{4}$, and$A_{5}$of$\mathbf{PGL}_{2}(\mathbb{C})$.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia