Artigos de revistas sobre o tema "Oxygenated Volatile Organic Compounds of Biogenic Origin (VOCB)"

Siga este link para ver outros tipos de publicações sobre o tema: Oxygenated Volatile Organic Compounds of Biogenic Origin (VOCB).

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 29 melhores artigos de revistas para estudos sobre o assunto "Oxygenated Volatile Organic Compounds of Biogenic Origin (VOCB)".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Debevec, Cécile, Stéphane Sauvage, Valérie Gros, Jean Sciare, Michael Pikridas, Iasonas Stavroulas, Thérèse Salameh et al. "Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)". Atmospheric Chemistry and Physics 17, n.º 18 (25 de setembro de 2017): 11355–88. http://dx.doi.org/10.5194/acp-17-11355-2017.

Texto completo da fonte
Resumo:
Abstract. More than 7000 atmospheric measurements of over 60 C2 − C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection–gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin or from more distant emission zones (i.e., the south coast of Turkey); and a last factor (36 %) associated with regional background pollution (air masses transported both from the Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOC concentrations observed at our sampling site. Finally, a combined analysis of VOC PMF factors with source-apportioned organic aerosols (OAs) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to the intense oxidation of biogenic precursors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Langford, B., E. Nemitz, E. House, G. J. Phillips, D. Famulari, B. Davison, J. R. Hopkins, A. C. Lewis e C. N. Hewitt. "Fluxes and concentrations of volatile organic compounds above central London, UK". Atmospheric Chemistry and Physics Discussions 9, n.º 4 (14 de agosto de 2009): 17297–333. http://dx.doi.org/10.5194/acpd-9-17297-2009.

Texto completo da fonte
Resumo:
Abstract. Concentrations and fluxes of eight volatile organic compounds (VOCs) were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone) and 0.2–1.3 ppb for the aromatics (benzene, toluene and ethylbenzene). Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25°C it is estimated that more than half the isoprene observed in central London is of biogenic origin.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Langford, B., E. Nemitz, E. House, G. J. Phillips, D. Famulari, B. Davison, J. R. Hopkins, A. C. Lewis e C. N. Hewitt. "Fluxes and concentrations of volatile organic compounds above central London, UK". Atmospheric Chemistry and Physics 10, n.º 2 (22 de janeiro de 2010): 627–45. http://dx.doi.org/10.5194/acp-10-627-2010.

Texto completo da fonte
Resumo:
Abstract. Concentrations and fluxes of eight volatile organic compounds (VOCs) were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone) and 0.2–1.3 ppb for the aromatics (benzene, toluene and C2-benzenes). Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25° C it is estimated that more than half the isoprene observed in central London is of biogenic origin.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Michoud, Vincent, Jean Sciare, Stéphane Sauvage, Sébastien Dusanter, Thierry Léonardis, Valérie Gros, Cerise Kalogridis et al. "Organic carbon at a remote site of the western Mediterranean Basin: sources and chemistry during the ChArMEx SOP2 field experiment". Atmospheric Chemistry and Physics 17, n.º 14 (21 de julho de 2017): 8837–65. http://dx.doi.org/10.5194/acp-17-8837-2017.

Texto completo da fonte
Resumo:
Abstract. The ChArMEx (Chemistry and Aerosols Mediterranean Experiments) SOP2 (special observation period 2) field campaign took place from 15 July to 5 August 2013 in the western Mediterranean Basin at Ersa, a remote site in Cape Corse. During the campaign more than 80 volatile organic compounds (VOCs), including oxygenated species, were measured by different online and offline techniques. At the same time, an exhaustive description of the chemical composition of fine aerosols was performed with an aerosol chemical speciation monitor (ACSM). Low levels of anthropogenic VOCs (typically tens to hundreds of parts per trillion for individual species) and black carbon (0.1–0.9 µg m−3) were observed, while significant levels of biogenic species (peaking at the ppb level) were measured. Furthermore, secondary oxygenated VOCs (OVOCs) largely dominated the VOC speciation during the campaign, while organic matter (OM) dominated the aerosol chemical composition, representing 55 % of the total mass of non-refractory PM1 on average (average of 3.74 ± 1.80 µg m−3), followed by sulfate (27 %, 1.83 ± 1.06 µg m−3), ammonium (13 %, 0.90 ± 0.55 µg m−3) and nitrate (5 %, 0.31 ± 0.18 µg m−3). Positive matrix factorization (PMF) and concentration field (CF) analyses were performed on a database containing 42 VOCs (or grouped VOCs), including OVOCs, to identify the covariation factors of compounds that are representative of primary emissions or chemical transformation processes. A six-factor solution was found for the PMF analysis, including a primary and secondary biogenic factor correlated with temperature and exhibiting a clear diurnal profile. In addition, three anthropogenic factors characterized by compounds with various lifetimes and/or sources have been identified (long-lived, medium-lived and short-lived anthropogenic factors). The anthropogenic nature of these factors was confirmed by the CF analysis, which identified potential source areas known for intense anthropogenic emissions (north of Italy and southeast of France). Finally, a factor characterized by OVOCs of both biogenic and anthropogenic origin was found. This factor was well correlated with submicron organic aerosol (OA) measured by an aerosol chemical speciation monitor (ACSM), highlighting the close link between OVOCs and organic aerosols; the latter is mainly associated (96 %) with the secondary OA fraction. The source apportionment of OA measured by ACSM led to a three-factor solution identified as hydrogen-like OA (HOA), semi-volatile oxygenated OA (SV-OOA) and low volatility OOA (LV-OOA) for averaged mass concentrations of 0.13, 1.59 and 1.92 µg m−3, respectively. A combined analysis of gaseous PMF factors with inorganic and organic fractions of aerosols helped distinguish between anthropogenic continental and biogenic influences on the aerosol- and gas-phase compositions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Johnson, D., S. R. Utembe e M. E. Jenkin. "Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK". Atmospheric Chemistry and Physics Discussions 5, n.º 4 (30 de agosto de 2005): 7875–902. http://dx.doi.org/10.5194/acpd-5-7875-2005.

Texto completo da fonte
Resumo:
Abstract. Following on from the companion study (Johnson et al., 2005a), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 non-methane anthropogenic volatile organic compounds (VOC) and three representative biogenic VOC, a highly-detailed representation of the atmospheric degradation of these VOC, the emission of primary organic aerosol (POA) material and the formation of secondary organic aerosol (SOA) material. SOA formation was represented by the transfer of semi- and non-volatile oxidation products from the gas-phase to a condensed organic aerosol-phase, according to estimated thermodynamic equilibrium phase-partitioning characteristics for around 2000 reaction products. After significantly scaling all phase-partitioning coefficients, and assuming a persistent background organic aerosol (both required in order to match the observed organic aerosol loadings), the detailed chemical composition of the simulated SOA has been investigated in terms of intermediate oxygenated species in the Master Chemical Mechanism, version 3.1 (MCM v3.1). For the various case studies considered, 90% of the simulated SOA mass comprises between ca. 70 and 100 multifunctional oxygenated species derived, in varying amounts, from the photooxidation of VOC of anthropogenic and biogenic origin. The anthropogenic contribution is dominated by aromatic hydrocarbons and the biogenic contribution by α- and β-pinene (which also constitute surrogates for other emitted monoterpene species). Sensitivity in the simulated mass of SOA to changes in the emission rates of anthropogenic and biogenic VOC has also been investigated for 11 case study events, and the results have been compared to the detailed chemical composition data. The role of accretion chemistry in SOA formation, and its implications for the results of the present investigation, is discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Johnson, D., S. R. Utembe e M. E. Jenkin. "Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK". Atmospheric Chemistry and Physics 6, n.º 2 (8 de fevereiro de 2006): 419–31. http://dx.doi.org/10.5194/acp-6-419-2006.

Texto completo da fonte
Resumo:
Abstract. Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 non-methane anthropogenic volatile organic compounds (VOC) and three representative biogenic VOC, a highly-detailed representation of the atmospheric degradation of these VOC, the emission of primary organic aerosol (POA) material and the formation of secondary organic aerosol (SOA) material. SOA formation was represented by the transfer of semi- and non-volatile oxidation products from the gas-phase to a condensed organic aerosol-phase, according to estimated thermodynamic equilibrium phase-partitioning characteristics for around 2000 reaction products. After significantly scaling all phase-partitioning coefficients, and assuming a persistent background organic aerosol (both required in order to match the observed organic aerosol loadings), the detailed chemical composition of the simulated SOA has been investigated in terms of intermediate oxygenated species in the Master Chemical Mechanism, version 3.1 (MCM v3.1). For the various case studies considered, 90% of the simulated SOA mass comprises between ca. 70 and 100 multifunctional oxygenated species derived, in varying amounts, from the photooxidation of VOC of anthropogenic and biogenic origin. The anthropogenic contribution is dominated by aromatic hydrocarbons and the biogenic contribution by α- and β-pinene (which also constitute surrogates for other emitted monoterpene species). Sensitivity in the simulated mass of SOA to changes in the emission rates of anthropogenic and biogenic VOC has also been investigated for 11 case study events, and the results have been compared to the detailed chemical composition data. The role of accretion chemistry in SOA formation, and its implications for the results of the present investigation, is discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Seco, R., J. Peñuelas, I. Filella, J. Llusia, S. Schallhart, A. Metzger, M. Müller e A. Hansel. "Volatile organic compounds in the Western Mediterranean Basin: urban and rural winter measurements during the DAURE campaign". Atmospheric Chemistry and Physics Discussions 12, n.º 11 (30 de novembro de 2012): 30909–50. http://dx.doi.org/10.5194/acpd-12-30909-2012.

Texto completo da fonte
Resumo:
Abstract. Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, but little is known about the daily VOC mixing ratios in Mediterranean urban and natural environments. We measured VOC mixing ratios concurrently at an urban and a rural site during the winter DAURE campaign in the northeastern Iberian Peninsula. All VOC mixing ratios measured were higher at the urban site (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 1.68, 0.31, 0.58 and 2.71 ppbv, respectively), with the exception of some short chain oxygenated VOCs such as acetone (with similar averages of 0.7–1.6 ppbv at both sites). Their average diurnal pattern also differed between the sites. Most of the VOCs at the urban location showed their highest mixing ratios in the morning and evening. These peaks coincided with traffic during rush hours, the main origin of most of the VOCs analyzed. Between these two peaks, the sea breeze transported the urban air inland, thus helping to lower the VOC loading at the urban site. At the rural site, most of the measured VOCs were advected by the midday sea breeze, yielding the highest daily VOC mixing ratios (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 0.65, 0.07, 0.19, and 0.41 ppbv, respectively). Only biogenic monoterpenes showed a clear local origin at this site. In addition, the concentrations of fine particulate matter observed at both sites, together with the synoptic meteorological conditions and radio-sounding data, allowed the identification of different atmospheric scenarios that had a clear influence on the measured VOC mixing ratios. These results highlight the differences and relationships in VOC mixing ratios between nearby urban and rural areas in Mediterranean regions. Further research in other urban-rural areas is warranted to better understand the urban-rural influence on atmospheric VOC mixing ratios under different atmospheric conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ait-Helal, W., A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel et al. "Volatile and intermediate-volatility organic compounds in sub-urban Paris: variability, origin and importance for SOA formation". Atmospheric Chemistry and Physics Discussions 14, n.º 4 (21 de fevereiro de 2014): 4841–904. http://dx.doi.org/10.5194/acpd-14-4841-2014.

Texto completo da fonte
Resumo:
Abstract. Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January–February 2010, at the SIRTA observatory in sub-urban Paris. Measurements of primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including for the first time C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scales and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and sub-urban Paris were surprisingly low (2–963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and sub-urban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (< 5 ppt) compared to summer (13–27 ppt) in agreement with a gas-particle partitioning in favor of their transfer to the particle phase in winter. Higher concentrations of most oxygenated VOCs in winter (18–5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an approach based on emissions inferred from the I / VOC concentrations times the SOA formation yields', the so-called integrated approach conducted in this study, 46% of the SOA measured at SIRTA is explained by our measured concentrations of I / VOC, with 10% explained by only C12-C16 IVOCs. From results of an alternative time-resolved approach, the explained variability of the SOA concentrations is improved when the IVOCs are taken into account. Both approaches, which are based on ambient measurements of particular I / VOCs, emphasize the importance of the intermediate volatility compounds in the SOA formation, and support previous results from chamber experiments and modeling studies. The approaches results support the need to make systematic the IVOCs speciated measurement during field campaigns.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

McKinney, K. A., B. H. Lee, A. Vasta, T. V. Pho e J. W. Munger. "Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest". Atmospheric Chemistry and Physics Discussions 10, n.º 11 (22 de novembro de 2010): 28565–633. http://dx.doi.org/10.5194/acpd-10-28565-2010.

Texto completo da fonte
Resumo:
Abstract. Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in western Massachusetts during the 2005 and 2007 growing seasons are reported. Measurements were made using proton transfer reaction mass spectrometry (PTR-MS) and converted to fluxes using the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 h−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 h−1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 h−1 in 2005 and 0.19 mg m−2 h−1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m−2 h−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 h−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge (m/z) ratios of 73 (0.05 mg m−2 h−1 in 2005; 0.03 mg m−2 h−1 in 2007) and 153 (5 μg m−2 h−1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene, respectively, were also observed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

McKinney, K. A., B. H. Lee, A. Vasta, T. V. Pho e J. W. Munger. "Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest". Atmospheric Chemistry and Physics 11, n.º 10 (24 de maio de 2011): 4807–31. http://dx.doi.org/10.5194/acp-11-4807-2011.

Texto completo da fonte
Resumo:
Abstract. Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS) and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 hr−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 hr−1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 hr−1 in 2005 and 0.19 mg m−2 hr−1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m−2 hr−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 hr−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge ($m/z$) ratios of 73 (0.05 mg m−2 hr−1 in 2005; 0.03 mg m−2 hr−1 in 2007) and 153 (5 μg m−2 hr−1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene or methyl salicylate, respectively, were also observed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Ait-Helal, W., A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel et al. "Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation". Atmospheric Chemistry and Physics 14, n.º 19 (1 de outubro de 2014): 10439–64. http://dx.doi.org/10.5194/acp-14-10439-2014.

Texto completo da fonte
Resumo:
Abstract. Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January–February 2010, at the SIRTA observatory in suburban Paris. Measurements comprise primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including C12–C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scale, and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and suburban Paris were surprisingly low (2–963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and suburban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (< 5 ppt) compared to summer (13–27 ppt), which cannot be explained by the gas-particle partitioning theory. Higher concentrations of most oxygenated VOCs in winter (18–5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an integrated approach based on emission ratios and SOA yields, 38 % of the SOA measured at SIRTA is explained by the measured concentrations of I / VOCs, with a 2% contribution by C12–C16 n-alkane IVOCs. From the results of an alternative time-resolved approach, the average IVOC contribution to SOA formation is estimated to be 7%, which is half of the average contribution of the traditional aromatic compounds (15%). Both approaches, which are based on in situ observations of particular I / VOCs, emphasize the importance of the intermediate volatility compounds in the SOA formation, and support previous results from chamber experiments and modeling studies. They also support the need to make systematic the IVOCs' speciated measurement during field campaigns.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Seco, R., J. Peñuelas, I. Filella, J. Llusia, S. Schallhart, A. Metzger, M. Müller e A. Hansel. "Volatile organic compounds in the western Mediterranean basin: urban and rural winter measurements during the DAURE campaign". Atmospheric Chemistry and Physics 13, n.º 8 (25 de abril de 2013): 4291–306. http://dx.doi.org/10.5194/acp-13-4291-2013.

Texto completo da fonte
Resumo:
Abstract. Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, but little is known about the daily VOC mixing ratios in Mediterranean urban and natural environments. We measured VOC mixing ratios concurrently at an urban and a rural site during the winter DAURE campaign in the northeastern Iberian Peninsula, by means of PTR-MS at both locations: a PTR-Quad-MS at the urban site and a PTR-ToF-MS at the rural site. All VOC mixing ratios measured were higher at the urban site (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 1.68, 0.31, 0.58 and 2.71 ppbv, respectively), with the exception of some short-chain oxygenated VOCs such as acetone (with similar averages of 0.7–1.6 ppbv at both sites). The average diurnal pattern also differed between the sites. Most of the VOCs at the urban location showed their highest mixing ratios in the morning and evening. These peaks coincided with traffic during rush hour, the main origin of most of the VOCs analyzed. Between these two peaks, the sea breeze transported the urban air inland, thus helping to lower the VOC loading at the urban site. At the rural site, most of the measured VOCs were advected by the midday sea breeze, yielding the highest daily VOC mixing ratios (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 0.65, 0.07, 0.19, and 0.41 ppbv, respectively). Only biogenic monoterpenes showed a clear local origin at this site. In addition, the concentrations of fine particulate matter observed at both sites, together with the synoptic meteorological conditions and radio-sounding data, allowed the identification of different atmospheric scenarios that had a clear influence on the measured VOC mixing ratios. These results highlight the differences and relationships in VOC mixing ratios between nearby urban and rural areas in Mediterranean regions. Further research in other urban-rural areas is warranted to better understand the urban-rural influence on atmospheric VOC mixing ratios under different atmospheric conditions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Jones, C. E., J. R. Hopkins e A. C. Lewis. "In situ measurements of isoprene and monoterpenes within a South-East Asian tropical rainforest". Atmospheric Chemistry and Physics Discussions 11, n.º 1 (17 de janeiro de 2011): 1189–218. http://dx.doi.org/10.5194/acpd-11-1189-2011.

Texto completo da fonte
Resumo:
Abstract. Biogenic volatile organic compounds (BVOCs) emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, and oxygenated VOCs (OVOCs) of biogenic origin such as methacrolein, in ambient air above a~tropical rainforest in Malaysian Borneo. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt, respectively, and with an average monoterpene to isoprene ratio of 0.3 during sunlight hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission occurred into the late afternoon/evening, under relatively low temperature and light conditions. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Whalley, L. K., D. Stone, B. Bandy, R. Dunmore, J. F. Hamilton, J. Hopkins, J. D. Lee, A. C. Lewis e D. E. Heard. "Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production". Atmospheric Chemistry and Physics Discussions 15, n.º 21 (9 de novembro de 2015): 31247–86. http://dx.doi.org/10.5194/acpd-15-31247-2015.

Texto completo da fonte
Resumo:
Abstract. Near-continuous measurements of OH reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on airmass origin with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the East, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ~ 27 s−1 in the morning with a minimum of ~ 15 s−1 during the afternoon. A maximum OH reactivity of 116 s−1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement dataset of volatile organic compounds (VOCs) derived from GC-FID and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs of α pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (&amp;geq; C9) was also considered, with the reactivity of the biogenic compounds of α pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (&amp;geq; C9) (particularly α pinene and limonene) and model-generated intermediates worsened the agreement between modelled and observed OH concentrations (by 41 %) and the magnitude of in situ ozone production calculated from the production of RO2 was significantly lower (60 %). This work highlights that any future ozone abatement strategies should consider the role that biogenic emissions play alongside anthropogenic emissions in influencing London's air quality.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Whalley, Lisa K., Daniel Stone, Brian Bandy, Rachel Dunmore, Jacqueline F. Hamilton, James Hopkins, James D. Lee, Alastair C. Lewis e Dwayne E. Heard. "Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production". Atmospheric Chemistry and Physics 16, n.º 4 (24 de fevereiro de 2016): 2109–22. http://dx.doi.org/10.5194/acp-16-2109-2016.

Texto completo da fonte
Resumo:
Abstract. Near-continuous measurements of hydroxyl radical (OH) reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on air mass origin, with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the east, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ∼ 27 s−1 in the morning, with a minimum of ∼ 15 s−1 during the afternoon. A maximum OH reactivity of 116 s−1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement data set of volatile organic compounds (VOCs) derived from a gas chromatography flame ionisation detector (GC-FID) and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs α-pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2–C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (⩾ C9) was also considered, with the reactivity of the biogenic compounds of α-pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (⩾ C9) (particularly α-pinene and limonene) and model-generated intermediates increases the modelled OH concentrations by 41 %, and the magnitude of in situ ozone production calculated from the production of RO2 was significantly lower (60 %). This work highlights that any future ozone abatement strategies should consider the role that biogenic emissions play alongside anthropogenic emissions in influencing London's air quality.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Jones, C. E., J. R. Hopkins e A. C. Lewis. "In situ measurements of isoprene and monoterpenes within a south-east Asian tropical rainforest". Atmospheric Chemistry and Physics 11, n.º 14 (19 de julho de 2011): 6971–84. http://dx.doi.org/10.5194/acp-11-6971-2011.

Texto completo da fonte
Resumo:
Abstract. Biogenic volatile organic compounds (BVOCs) emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, as well as oxygenated VOCs (OVOCs) of biogenic origin such as methacrolein, in ambient air above a tropical rainforest in Malaysian Borneo during the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3) project in 2008. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt respectively, and with an average monoterpene toisoprene ratio of 0.3 during sunlit hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission continued into the late afternoon/evening, under relatively low temperature and light conditions. The contributions of isoprene, monoterpenes and other classes of VOC to the volatile carbon budget and OH reactivity have been summarised for this rainforest location. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Debevec, Cécile, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac e Nadine Locoge. "Seasonal variation and origins of volatile organic compounds observed during 2 years at a western Mediterranean remote background site (Ersa, Cape Corsica)". Atmospheric Chemistry and Physics 21, n.º 3 (3 de fevereiro de 2021): 1449–84. http://dx.doi.org/10.5194/acp-21-1449-2021.

Texto completo da fonte
Resumo:
Abstract. An original time series of about 300 atmospheric measurements of a wide range of volatile organic compounds (VOCs) was obtained at a remote Mediterranean station on the northern tip of Corsica (Ersa, France) over 25 months from June 2012 to June 2014. This study presents the seasonal variabilities of 35 selected VOCs and their various associated sources. The VOC abundance was largely dominated by oxygenated VOCs (OVOCs) along with primary anthropogenic VOCs with a long lifetime in the atmosphere. VOC temporal variations were then examined. Primarily of local origin, biogenic VOCs exhibited notable seasonal and interannual variations, related to temperature and solar radiation. Anthropogenic compounds showed increased concentrations in winter (JFM months) followed by a decrease in spring/summer (AMJ/JAS months) and higher winter concentration levels in 2013 than in 2014 by up to 0.3 µg m−3 in the cases of propane, acetylene and benzene. OVOC concentrations were generally high in summertime, mainly due to secondary anthropogenic/biogenic and primary biogenic sources, whereas their lower concentrations during autumn and winter were potentially more influenced by primary/secondary anthropogenic sources. Moreover, an apportionment factorial analysis was applied to a database comprising a selection of 14 individual or grouped VOCs by means of the positive matrix factorization (PMF) technique. A PMF five-factor solution was taken on. It includes an anthropogenic factor (which contributed 39 % to the total concentration of the VOCs selected in the PMF analysis) connected to the regional background pollution, three other anthropogenic factors (namely short-lived anthropogenic sources, evaporative sources, and long-lived combustion sources, which together accounted for 57 %) originating from either nearby or more distant emission areas (such as Italy and south of France), and a local biogenic source (4 %). Variations in these main sources impacting VOC concentrations observed at the Ersa station were also investigated at seasonal and interannual scales. In spring and summer, VOC concentrations observed at Ersa were the lowest in the 2-year period, despite higher biogenic source contributions. During these seasons, anthropogenic sources advected to Ersa were largely influenced by chemical transformations and vertical dispersion phenomena and were mainly of regional origins. During autumn and winter, anthropogenic sources showed higher contributions when European air masses were advected to Ersa and could be associated with potential emission areas located in Italy and possibly more distant ones in central Europe. Higher VOC winter concentrations in 2013 than in 2014 could be related to contribution variations in anthropogenic sources probably governed by their emission strength with external parameters, i.e. weaker dispersion phenomena and the pollutant depletion. High-frequency observations collected during several intensive field campaigns conducted at Ersa during the three summers 2012–2014 confirmed findings drawn from bi-weekly samples of the 2-year period in terms of summer concentration levels and source apportionment. However, they also suggested that higher sampling frequency and temporal resolution, in particular to observe VOC concentration variations during the daily cycle, would have been necessary to confirm the deconvolution of the different anthropogenic sources identified following the PMF approach. Finally, comparisons of the 25 months of Ersa observations with VOC measurements conducted at 17 other European monitoring stations highlighted the representativeness of the Ersa station for monitoring seasonal variations in VOC regional pollution impacting continental Europe. Nevertheless, VOC winter concentration levels can significantly vary between sites, pointing out spatial variations in anthropogenic source contributions. As a result, Ersa concentration variations in winter were more representative of VOC regional pollution impacting central Europe. Moreover, interannual and spatial variations in VOC winter concentration levels were significantly impacted by synoptic phenomena influencing meteorological conditions observed in continental Europe, suggesting that short observation periods may reflect the variability of the identified parameters under the specific meteorological conditions of the study period.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Seco, R., J. Peñuelas, I. Filella, J. Llusià, R. Molowny-Horas, S. Schallhart, A. Metzger, M. Müller e A. Hansel. "Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions". Atmospheric Chemistry and Physics Discussions 11, n.º 7 (19 de julho de 2011): 20389–431. http://dx.doi.org/10.5194/acpd-11-20389-2011.

Texto completo da fonte
Resumo:
Abstract. Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic VOCs emitted in the local valley by the vegetation, thus enhancing O3 formation in this forested site. The only VOC species that showed a somewhat different daily pattern were monoterpenes because of their local biogenic emission. Isoprene also followed in part the daily pattern of monoterpenes, but only in summer when its biotic sources were stronger. The increase by one order of magnitude in the concentrations of these volatile isoprenoids highlights the importance of local biogenic summer emissions in these Mediterranean forested areas which also receive polluted air masses from nearby or distant anthropic sources.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Seco, R., J. Peñuelas, I. Filella, J. Llusià, R. Molowny-Horas, S. Schallhart, A. Metzger, M. Müller e A. Hansel. "Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions". Atmospheric Chemistry and Physics 11, n.º 24 (21 de dezembro de 2011): 13161–79. http://dx.doi.org/10.5194/acp-11-13161-2011.

Texto completo da fonte
Resumo:
Abstract. Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic VOCs emitted in the local valley by the vegetation, thus enhancing O3 formation in this forested site. The only VOC species that showed a somewhat different daily pattern were monoterpenes because of their local biogenic emission. Isoprene also followed in part the daily pattern of monoterpenes, but only in summer when its biotic sources were stronger. The increase by one order of magnitude in the concentrations of these volatile isoprenoids highlights the importance of local biogenic summer emissions in these Mediterranean forested areas which also receive polluted air masses from nearby or distant anthropic sources.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Bourtsoukidis, E., J. Williams, J. Kesselmeier, S. Jacobi e B. Bonn. "From emissions to ambient mixing ratios: online seasonal field measurements of volatile organic compounds over a Norway spruce-dominated forest in central Germany". Atmospheric Chemistry and Physics 14, n.º 13 (1 de julho de 2014): 6495–510. http://dx.doi.org/10.5194/acp-14-6495-2014.

Texto completo da fonte
Resumo:
Abstract. Biogenic volatile organic compounds (BVOCs) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and proton-transfer-reaction mass spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids dominate the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon-containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes, which were emitted most strongly in April. Finally, we evaluate the temperature-dependent algorithm that seems to describe the temperature-dependent emissions of methanol, acetaldehyde and monoterpenes but only with the use of the monthly derived values for emission potential, Es, and temperature dependency, β factor.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Dominutti, Pamela A., Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne et al. "Insights into tropical cloud chemistry in Réunion (Indian Ocean): results from the BIO-MAÏDO campaign". Atmospheric Chemistry and Physics 22, n.º 1 (13 de janeiro de 2022): 505–33. http://dx.doi.org/10.5194/acp-22-505-2022.

Texto completo da fonte
Resumo:
Abstract. We present here the results obtained during an intensive field campaign conducted in the framework of the French “BIO-MAÏDO” (Bio-physico-chemistry of tropical clouds at Maïdo (Réunion Island): processes and impacts on secondary organic aerosols' formation) project. This study integrates an exhaustive chemical and microphysical characterization of cloud water obtained in March–April 2019 in Réunion (Indian Ocean). Fourteen cloud samples have been collected along the slope of this mountainous island. Comprehensive chemical characterization of these samples is performed, including inorganic ions, metals, oxidants, and organic matter (organic acids, sugars, amino acids, carbonyls, and low-solubility volatile organic compounds, VOCs). Cloud water presents high molecular complexity with elevated water-soluble organic matter content partly modulated by microphysical cloud properties. As expected, our findings show the presence of compounds of marine origin in cloud water samples (e.g. chloride, sodium) demonstrating ocean–cloud exchanges. Indeed, Na+ and Cl− dominate the inorganic composition contributing to 30 % and 27 %, respectively, to the average total ion content. The strong correlations between these species (r2 = 0.87, p value: < 0.0001) suggest similar air mass origins. However, the average molar Cl-/Na+ ratio (0.85) is lower than the sea-salt one, reflecting a chloride depletion possibly associated with strong acids such as HNO3 and H2SO4. Additionally, the non-sea-salt fraction of sulfate varies between 38 % and 91 %, indicating the presence of other sources. Also, the presence of amino acids and for the first time in cloud waters of sugars clearly indicates that biological activities contribute to the cloud water chemical composition. A significant variability between events is observed in the dissolved organic content (25.5 ± 18.4 mg C L−1), with levels reaching up to 62 mg C L−1. This variability was not similar for all the measured compounds, suggesting the presence of dissimilar emission sources or production mechanisms. For that, a statistical analysis is performed based on back-trajectory calculations using the CAT (Computing Atmospheric Trajectory Tool) model associated with the land cover registry. These investigations reveal that air mass origins and microphysical variables do not fully explain the variability observed in cloud chemical composition, highlighting the complexity of emission sources, multiphasic transfer, and chemical processing in clouds. Even though a minor contribution of VOCs (oxygenated and low-solubility VOCs) to the total dissolved organic carbon (DOC) (0.62 % and 0.06 %, respectively) has been observed, significant levels of biogenic VOC (20 to 180 nmol L−1) were detected in the aqueous phase, indicating the cloud-terrestrial vegetation exchange. Cloud scavenging of VOCs is assessed by measurements obtained in both the gas and aqueous phases and deduced experimental gas-/aqueous-phase partitioning was compared with Henry's law equilibrium to evaluate potential supersaturation or unsaturation conditions. The evaluation reveals the supersaturation of low-solubility VOCs from both natural and anthropogenic sources. Our results depict even higher supersaturation of terpenoids, evidencing a deviation from thermodynamically expected partitioning in the aqueous-phase chemistry in this highly impacted tropical area.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kumar, Varun, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee et al. "Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry". Atmospheric Chemistry and Physics 22, n.º 11 (15 de junho de 2022): 7739–61. http://dx.doi.org/10.5194/acp-22-7739-2022.

Texto completo da fonte
Resumo:
Abstract. In recent years, the Indian capital city of Delhi has been impacted by very high levels of air pollution, especially during winter. Comprehensive knowledge of the composition and sources of the organic aerosol (OA), which constitutes a substantial fraction of total particulate mass (PM) in Delhi, is central to formulating effective public health policies. Previous source apportionment studies in Delhi identified key sources of primary OA (POA) and showed that secondary OA (SOA) played a major role but were unable to resolve specific SOA sources. We address the latter through the first field deployment of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) in Delhi, together with a high-resolution aerosol mass spectrometer (AMS). Measurements were conducted during the winter of 2018/19, and positive matrix factorization (PMF) was used separately on AMS and EESI-TOF datasets to apportion the sources of OA. AMS PMF analysis yielded three primary and two secondary factors which were attributed to hydrocarbon-like OA (HOA), biomass burning OA (BBOA-1 and BBOA-2), more oxidized oxygenated OA (MO-OOA), and less oxidized oxygenated OA (LO-OOA). On average, 40 % of the total OA mass was apportioned to the secondary factors. The SOA contribution to total OA mass varied greatly between the daytime (76.8 %, 10:00–16:00 local time (LT)) and nighttime (31.0 %, 21:00–04:00 LT). The higher chemical resolution of EESI-TOF data allowed identification of individual SOA sources. The EESI-TOF PMF analysis in total yielded six factors, two of which were primary factors (primary biomass burning and cooking-related OA). The remaining four factors were predominantly of secondary origin: aromatic SOA, biogenic SOA, aged biomass burning SOA, and mixed urban SOA. Due to the uncertainties in the EESI-TOF ion sensitivities, mass concentrations of EESI-TOF SOA-dominated factors were related to the total AMS SOA (i.e. MO-OOA + LO-OOA) by multiple linear regression (MLR). Aromatic SOA was the major SOA component during the daytime, with a 55.2 % contribution to total SOA mass (42.4 % contribution to total OA). Its contribution to total SOA, however, decreased to 25.4 % (7.9 % of total OA) during the nighttime. This factor was attributed to the oxidation of light aromatic compounds emitted mostly from traffic. Biogenic SOA accounted for 18.4 % of total SOA mass (14.2 % of total OA) during the daytime and 36.1 % of total SOA mass (11.2 % of total OA) during the nighttime. Aged biomass burning and mixed urban SOA accounted for 15.2 % and 11.0 % of total SOA mass (11.7 % and 8.5 % of total OA mass), respectively, during the daytime and 15.4 % and 22.9 % of total SOA mass (4.8 % and 7.1 % of total OA mass), respectively, during the nighttime. A simple dilution–partitioning model was applied on all EESI-TOF factors to estimate the fraction of observed daytime concentrations resulting from local photochemical production (SOA) or emissions (POA). Aromatic SOA, aged biomass burning, and mixed urban SOA were all found to be dominated by local photochemical production, likely from the oxidation of locally emitted volatile organic compounds (VOCs). In contrast, biogenic SOA was related to the oxidation of diffuse regional emissions of isoprene and monoterpenes. The findings of this study show that in Delhi, the nighttime high concentrations are caused by POA emissions led by traffic and biomass burning and the daytime OA is dominated by SOA, with aromatic SOA accounting for the largest fraction. Because aromatic SOA is possibly more toxic than biogenic SOA and primary OA, its dominance during the daytime suggests an increased OA toxicity and health-related consequences for the general public.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Bourtsoukidis, E., J. Williams, J. Kesselmeier, S. Jacobi e B. Bonn. "From emissions to ambient mixing ratios: on-line seasonal field measurements of volatile organic compounds over a Norway spruce dominated forest in central Germany". Atmospheric Chemistry and Physics Discussions 13, n.º 11 (18 de novembro de 2013): 30187–232. http://dx.doi.org/10.5194/acpd-13-30187-2013.

Texto completo da fonte
Resumo:
Abstract. Biogenic volatile organic compounds (BVOC) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in Central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and Proton Transfer Reaction–Mass Spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids govern the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes that were emitted most strongly in April. We exploit the wide range of conditions experienced at the site to filter the dataset with a combination of temperature, ozone and absolute humidity values in order to derive the emission potential and temperature dependency development for the major chemical species investigated. A profound reduction of monoterpene emission potential (E30) and temperature dependency (β) was found under low temperature regimes, combined with low ozone levels (E30MT, LTLO3=56 ± 9.1 ng g(dw)−1 h−1, βMT,LTLO3=0.03±0.01 K−1) while a combination of both stresses was found to alter their emissions responses with respect to temperature substantially (E30MT,HTHO3=1420.1 ± 191.4 ng g(dw)−1 h−1, βMT,HTHO3=0.15 ± 0.02 K−1). Moreover, we have explored compound relationships under different atmospheric condition sets, addressing possible co-occurrence of emissions under specific conditions. Finally, we evaluate the temperature dependent algorithm that seems to describe the temperature dependent emissions. Highest emission deviations were observed for monoterpenes and these emission fluctuations were attributed to a fraction which is triggered by an additional light dependency.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Baudic, Alexia, Valérie Gros, Stéphane Sauvage, Nadine Locoge, Olivier Sanchez, Roland Sarda-Estève, Cerise Kalogridis et al. "Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)". Atmospheric Chemistry and Physics 16, n.º 18 (26 de setembro de 2016): 11961–89. http://dx.doi.org/10.5194/acp-16-11961-2016.

Texto completo da fonte
Resumo:
Abstract. Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2–C8) measurements were performed in downtown Paris (urban background sites) from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs) and aromatic/oxygenated species (OVOCs) measured by a GC-FID (gas chromatograph with a flame ionization detector) and a PTR-MS (proton transfer reaction – mass spectrometer), respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature). Source apportionment (SA) was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF) was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions) and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature). The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %), with the remaining emissions from natural gas and background (23 %), solvent use (20 %), wood-burning (18 %) and a biogenic source (15 %). An important finding of this work is the significant contribution from wood-burning, especially in winter, where it could represent up to ∼ 50 % of the total mass of VOCs. Biogenic emissions also surprisingly contributed up to ∼ 30 % in summer (due to the dominating weight of OVOCs in this source). Finally, the mixed natural gas and background source exhibited a high contribution in spring (35 %, when continental air influences were observed) and in autumn (23 %, for home heating consumption).
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Hu, Di, e Jian Zhen Yu. "Secondary organic aerosol tracers and malic acid in Hong Kong: seasonal trends and origins". Environmental Chemistry 10, n.º 5 (2013): 381. http://dx.doi.org/10.1071/en13104.

Texto completo da fonte
Resumo:
Environmental context Secondary organic aerosols (SOAs), a major organic component of ambient fine particles, contribute to adverse health effects and visibility degradation. Quantification of SOA tracers allows estimation of contributions from specific precursors, which helps the formulation of effective control strategies. We found that malic acid was present in SOA at high abundance in both winter and summer; its seasonally distinct inter-species relationships offer insights into distinct SOA formation pathways. Abstract Fine particle samples collected at an urban location in Hong Kong during winter were analysed by gas chromatography–ion trap mass spectrometry with prior chemical derivatisation. In total, 15 secondary organic aerosol (SOA) tracers from isoprene, monoterpenes, β-caryophyllene and toluene, and 24 other polar oxygenated compounds, were identified and quantified. Monoterpenes and isoprene SOA tracers showed lower levels on winter long-range transport (LRT) days than summer regional days, the latter being reported in our previous study. Opposite seasonal trends were observed for SOA tracers of β-caryophyllene and toluene. The averaged total secondary organic carbon (SOC) apportioned to these four volatile organic compounds (VOCs) was estimated to be 4.73μgCm–3 on winter LRT days, lower than that on summer regional days (5.21μgCm–3). β-caryophyllene and monoterpenes were found to be the most significant SOC contributors to PM2.5 in Hong Kong in both winter and summer, and their averaged SOC contributions on winter LRT days were 2.24 and 1.59μgCm–3. Toluene and isoprene had relatively minor contributions to SOC in Hong Kong in both seasons, with averaged SOC contributions of 0.81 and 0.08μgCm–3 on winter LRT days. Malic acid was well correlated with biogenic SOA tracers and oxalate in both seasons, whereas correlation between malic and succinic acid was only found in winter. Based on the seasonal characteristic inter-species correlations in the region, we hypothesise that malic acid could be formed mainly by the aqueous-phase photodegradation of SOA products of biogenic VOCs during summer. In winter, emissions of biogenic VOCs are greatly reduced and succinic acid then becomes the predominant contributor to malic acid.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hamilton, J. F., M. R. Alfarra, N. Robinson, M. W. Ward, A. C. Lewis, G. B. McFiggans, H. Coe e J. D. Allan. "Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest". Atmospheric Chemistry and Physics 13, n.º 22 (21 de novembro de 2013): 11295–305. http://dx.doi.org/10.5194/acp-13-11295-2013.

Texto completo da fonte
Resumo:
Abstract. Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding these transformation processes has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a Southeast Asian tropical rainforest in Borneo were characterised using liquid chromatography–ion trap mass spectrometry, high-resolution aerosol mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyl tetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Hamilton, J. F., M. R. Alfarra, N. Robinson, M. W. Ward, A. C. Lewis, G. B. McFiggans, H. Coe e J. D. Allan. "Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest". Atmospheric Chemistry and Physics Discussions 13, n.º 7 (8 de julho de 2013): 18113–41. http://dx.doi.org/10.5194/acpd-13-18113-2013.

Texto completo da fonte
Resumo:
Abstract. Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding the process of these transformations has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a South East Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high resolution aerosol mass spectrometry and fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyltetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

El Haddad, I., B. D'Anna, B. Temime-Roussel, M. Nicolas, A. Boreave, O. Favez, D. Voisin et al. "On the chemical nature of the oxygenated organic aerosol: implication in the formation and aging of α-pinene SOA in a Mediterranean environment, Marseille". Atmospheric Chemistry and Physics Discussions 12, n.º 8 (9 de agosto de 2012): 19769–97. http://dx.doi.org/10.5194/acpd-12-19769-2012.

Texto completo da fonte
Resumo:
Abstract. Organic Aerosol (OA) measurements were conducted during summer 2008 at an urban background site, in Marseille, France's second city and the largest port in the Mediterranean, an urban industrialized environment known for its active photochemistry. PM2.5 was collected using high volume samplers and analyzed for elemental and organic carbon, major ions (NH4+, NO3− and SO42−), humic-like-substances, organic markers (i.e. primary tracers and α-pinene oxidation products), elemental composition and radiocarbon content (14C). The real-time chemical characterization of submicron particles was also achieved using a compact time of flight aerosol mass spectrometer. Positive matrix factorization conducted on the organic aerosol mass spectra matrix revealed four factors, including traffic emissions (hydrocarbon-like OA, HOA), industrial emissions, semi-volatile (SV-OOA) and low-volatile (LV-OOA) oxygenated organic aerosol (OOA) related to oxidation processes. The results obtained were in excellent agreement with chemical mass balance source apportionments conducted in conjunction with organic markers and elements. It appears that while primary emissions contributed only 22% to the total OA (of which 23% was associated with industrial processes), OOA constituted the overwhelming fraction. Radiocarbon measurements suggest that about 80% of this fraction was of non-fossil origin, assigned predominantly to biogenic secondary organic aerosol. Non-fossil carbon appears to especially dominate the LV-OOA fraction, an aged long-range-transported OOA, marginally affected by local anthropogenic SOA. We also examined the relation between OOA and α-pinene SOA obtained based on the levels of α-pinene oxidation products. α-pinene SOA showed good correlation with SV-OOA, suggesting that the compounds used for estimating α-pinene SOA appear to pertain mainly to the moderately oxidized fraction. In contrast, LV-OOA was found to be intimately related to HUmic LIke substances (HULIS), meaning that these two fractions arise from the same oxidation pathways and share a similar chemical composition (i.e. poly-carboxylic species). A thorough analysis of α-pinene individual oxidation products showed that aging can heavily impact their respective concentrations, as early generation products seem to decay with photochemistry when more oxidized compounds seem to be formed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Shen, Xiaoli, Heike Vogel, Bernhard Vogel, Wei Huang, Claudia Mohr, Ramakrishna Ramisetty, Thomas Leisner, André S. H. Prévôt e Harald Saathoff. "Composition and origin of PM<sub>2.5</sub> aerosol particles in the upper Rhine valley in summer". Atmospheric Chemistry and Physics 19, n.º 20 (25 de outubro de 2019): 13189–208. http://dx.doi.org/10.5194/acp-19-13189-2019.

Texto completo da fonte
Resumo:
Abstract. We conducted a 6-week measurement campaign in summer 2016 at a rural site about 11 km north of the city of Karlsruhe in southwest Germany in order to study the chemical composition and origin of aerosols in the upper Rhine valley. In particular, we deployed a single-particle mass spectrometer (LAAPTOF) and an aerosol mass spectrometer (AMS) to provide complementary chemical information on aerosol particles smaller than 2.5 µm. For the entire measurement period, the total aerosol particle mass was dominated by sodium salts, contributing on average (36±27) % to the total single particles measured by the LAAPTOF. The total particulate organic compounds, sulfate, nitrate, and ammonium contributed on average (58±12) %, (22±7) %, (10±1) %, and (9±3) % to the total non-refractory particle mass measured by the AMS. Positive matrix factorization (PMF) analysis for the AMS data suggests that the total organic aerosol (OA) consisted of five components, including (9±7) % hydrocarbon-like OA (HOA), (16±11) % semi-volatile oxygenated OA (SV-OOA), and (75±15) % low-volatility oxygenated OA (LV-OOA). The regional transport model COSMO-ART was applied for source apportionment and to achieve a better understanding of the impact of complex transport patterns on the field observations. Combining field observations and model simulations, we attributed high particle numbers and SO2 concentrations observed at this rural site to industrial emissions from power plants and a refinery in Karlsruhe. In addition, two characteristic episodes with aerosol particle mass dominated by sodium salts particles comprising (70±24) % of the total single particles and organic compounds accounting for (77±6) % of total non-refractory species, respectively, were investigated in detail. For the first episode, we identified relatively fresh and aged sea salt particles originating from the Atlantic Ocean more than 800 km away. These particles showed markers like m∕z 129 C5H7NO3+, indicating the influence of anthropogenic emissions modifying their composition, e.g. from chloride to nitrate salts during the long-range transport. For a 3 d episode including high organic mass concentrations, model simulations show that on average (74±7) % of the particulate organics at this site were of biogenic origin. Detailed model analysis allowed us to find out that three subsequent peaks of high organic mass concentrations originated from different sources, including local emissions from the city and industrial area of Karlsruhe, regional transport from the city of Stuttgart (∼64 km away), and potential local night-time formation and growth. Biogenic (forest) and anthropogenic (urban) emissions were mixed during transport and contributed to the formation of organic particles. In addition, topography, temperature inversion, and stagnant meteorological conditions also played a role in the build-up of higher organic particle mass concentrations. Furthermore, the model was evaluated using field observations and corresponding sensitivity tests. The model results show good agreement with trends and concentrations observed for several trace gases (e.g. O3, NO2, and SO2) and aerosol particle compounds (e.g. ammonium and nitrate). However, the model underestimates the number of particles by an order of magnitude and underestimates the mass of organic particles by a factor of 2.3. The discrepancy was expected for particle number since the model does not include all nucleation processes. The missing organic mass indicates either an underestimated regional background or missing sources and/or mechanisms in the model, like night-time chemistry. This study demonstrates the potential of combining comprehensive field observations with dedicated transport modelling to understand the chemical composition and complex origin of aerosols.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia