Literatura científica selecionada sobre o tema "Oxidation reduction"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Oxidation reduction".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Oxidation reduction"

1

Nam, K. W., H. R. Jeong e S. H. Ahn. "VOCs Removal by Oxidation/Reduction Reaction of Cu-Doped Photocatalyst". International Journal of Chemical Engineering and Applications 7, n.º 6 (dezembro de 2016): 359–64. http://dx.doi.org/10.18178/ijcea.2016.7.6.605.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Nan Yao and Yu Lin Hu, Nan Yao and Yu Lin Hu. "Recent Progress in the Application of Ionic Liquids in Electrochemical Oxidation and Reduction". Journal of the chemical society of pakistan 41, n.º 2 (2019): 264. http://dx.doi.org/10.52568/000728/jcsp/41.02.2019.

Texto completo da fonte
Resumo:
Electrochemical oxidation and reduction, with clean power, are key to energy conversion and storage. For example, electrochemical oxidation is a determining step for fuel cells, combination of electrochemical oxidation and reduction can form a metal-air battery. Electrochemical oxidation and reduction make significant contributions to prepare valuable chemicals directly and improve yield efficiency and reduce the three wastes, which have become one of the green methodologies. Ionic liquids have attracted increasing attentions in the area of electrochemistry due to their significant properties including good chemical and thermal stability, wide liquid temperature range, considerable ionic conductivity, nonflammability, broad electrochemical potential window and tunable solvent properties. Up to now, abundant studies of ionic liquids have reported for their practical applications for electrochemical reactions. This review covers recent studies on the applications of ILs as green and universal replacements for the traditional reagents in electrochemical oxidation and reduction. The adaptabilities of ILs in these reactions are predicted as a solution to the problems of conventional electrochemical processes and to become a powerful method in electrochemical oxidation and reduction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hertz, Leif. "Brain Glutamine Synthesis Requires Neuronal Aspartate: A Commentary". Journal of Cerebral Blood Flow & Metabolism 31, n.º 1 (10 de novembro de 2010): 384–87. http://dx.doi.org/10.1038/jcbfm.2010.199.

Texto completo da fonte
Resumo:
Inspired by the paper, ‘Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation’ by Pardo et al, a modified model of oxidation–reduction, transamination, and mitochondrial carrier reactions involved in aspartate-dependent astrocytic glutamine synthesis and oxidation is proposed. The alternative model retains the need for cytosolic aspartate for transamination of α-ketoglutarate, but the ‘missing’ aspartate molecule is generated within astrocytes during subsequent glutamate oxidation. Oxaloacetate formed during glutamate formation is used during glutamate degradation, and all transmitochondrial reactions, oxidations–reductions, and cytosolic and mitochondrial transaminations are stoichiometrically balanced. The model is consistent with experimental observations made by Pardo et al.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cerciello, Francesca, Antonio Fabozzi, Christoph Yannakis, Sebastian Schmitt, Oğuzhan Narin, Viktor Scherer e Osvalda Senneca. "Kinetics of iron reduction upon reduction/oxidation cycles". International Journal of Hydrogen Energy 65 (maio de 2024): 337–47. http://dx.doi.org/10.1016/j.ijhydene.2024.04.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

HIROHASHI, Ryo. "Oxidation-Reduction of Organic Dyes". Journal of the Japan Society of Colour Material 64, n.º 2 (1991): 92–99. http://dx.doi.org/10.4011/shikizai1937.64.92.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Khandelwal, Y., G. Moraes, N. J. de Souza, H. W. Fehihaber e E. F. Paulus. "Oxidation/reduction studies with forskolin". Tetrahedron Letters 27, n.º 51 (janeiro de 1986): 6249–52. http://dx.doi.org/10.1016/s0040-4039(00)85444-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Millis, Kevin K., Kim H. Weaver e Dallas L. Rabenstein. "Oxidation/reduction potential of glutathione". Journal of Organic Chemistry 58, n.º 15 (julho de 1993): 4144–46. http://dx.doi.org/10.1021/jo00067a060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Schrittwieser, Joerg H., Johann Sattler, Verena Resch, Francesco G. Mutti e Wolfgang Kroutil. "Recent biocatalytic oxidation–reduction cascades". Current Opinion in Chemical Biology 15, n.º 2 (abril de 2011): 249–56. http://dx.doi.org/10.1016/j.cbpa.2010.11.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Schink, Bernhard, e Michael Friedrich. "Phosphite oxidation by sulphate reduction". Nature 406, n.º 6791 (julho de 2000): 37. http://dx.doi.org/10.1038/35017644.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Davis, B. G. "ChemInform Abstract: Oxidation and Reduction". ChemInform 31, n.º 17 (8 de junho de 2010): no. http://dx.doi.org/10.1002/chin.200017252.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Oxidation reduction"

1

Monsen, Bodil Elisabeth. "Iron ore concentrates : oxidation and reduction". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 1992. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5747.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hong, William Sungil. "Oxidation-reduction kinetics of porous titanium dioxide /". The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487331541711442.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Zweni, Pumza P. "Dendrimer-transition metal catalyzed oxidation and reduction reactions". Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/10529.

Texto completo da fonte
Resumo:
This project was launched with the aim of developing dendrimer catalysts for oxidation and reduction reactions. Poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers were of interest because of their well-established synthesis. Chapter 1 describes the fundamentals of dendrimers and provides a brief insight of their application in catalysis. In particular, examples of dendritic catalysts that have been previously employed as oxidation and reduction catalysts are presented. Chapter 2 presents the synthesis and characterization of silica-supported PAMAM dendrimers, their phosphomethylation with Ph2 PCH2OH, and their complexation to palladium complexes. Chapter 3 reports the application of the silica-supported PAMAM-Pd complexes to the oxidation of alkenes to methyl ketones under Wacker-type conditions as well as the use of tBuOOH as the oxidant in these reactions. Chapter 4 discusses the use of the above-mentioned complexes to catalyze the selective hydrogenation of dienes to monoolefins in the presence of H2 under mild reaction conditions. Chapter 5 presents our efforts in modifying PPI dendrimers with the salen moiety to give ligands that are coordinated to the metals Ti and V. Attempts at using the former complexes to promote the epoxidation of alkenes and the latter complexes to catalyze the epoxidation of olefinic alcohols are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bowsher, C. G. "Nitrite reduction and carbohydrate oxidation in root plastids". Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234223.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Minuzzi, Felipe Crivellaro. "Reduction techniques applied to the oxidation of ethanol". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/182056.

Texto completo da fonte
Resumo:
A simulação numérica de escoamentos reativos, como a combustão, tem um caráter altamente não-linear devido a presença de diversas reações químicas que acontecem entre as espécies que descrevem o processo de oxidação do combustível. Além disso, tais processos ocorrem a nível molecular, tornando o sistema de equações governantes rígido, o que implica na necessidade de esquemas numéricos de alta ordem bem como malhas finas e passo de tempo pequeno, aumentando consideravelmente o custo computacional. Neste sentido, o uso de mecanismos de oxidação detalhados na simulação numérica é proibitivo, e técnicas de redução química são necessárias de modo a desenvolver modelos reduzidos com menos variáveis e rigidez moderado, mantendo a precisão e abrangência do modelo detalhado. O objetivo do presente trabalho é obter uma comparação dos resultados obtidos para duas técnicas de redução química diferentes, Directed Relation Graph - DRG, baseada no desenvolvimento de mecanismos esqueletos, e a Reaction Diffusion Manifolds - REDIM, baseada na separação das escalas de tempo. Como validação dos modelos propostos, simulações numéricas 1D de chamas pré-misturadas e não pré-misturadas, bem como de reatores homogêneos, são desenvolvidas. Além disso, uma estratégia que une as duas técnicas de redução é apresentada, com o objetivo de ser aplicada em mecanismos cinéticos grandes.
Numerical simulation of reactive flows, such as combustion, has a highly non-linear character due to the presence of several chemical reactions that occur among the chemical species that describe the process of fuel’s oxidation. Besides, such processes occur at a molecular level, making the system of governing equations stiff, which implies in the need of high order numerical schemes as well as fine meshes and small time step, enhancing considerably the computational cost. In this sense, the use of detailed oxidation mechanisms in the numerical simulation is prohibitive, and chemical reduction techniques are needed in order to develop reduced models with less variables and moderate stiffness, while maintaining the accuracy and comprehensiveness of the detailed model. The objective of the present works if to obtain a comparison between two chemical reduction techniques, the Directed Relation Graph - DRG, based on the skeletal mechanisms generation, and the Reaction Diffusion Manifolds - REDIM, based on the separation of time scales. As validation of the proposed models, one-dimensional numerical simulations of premixed and non-premixed flames, as well as homogeneous reactors, are carry out. Besides, a coupled methodology between DRG and REDIM is presented, that will provide a useful tool for simulation of fuels with very large detailed kinetic mechanisms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ayub, Ibrar. "Oxidation and reduction properties of iron-containing oxides". Thesis, n.p, 2001. http://ethos.bl.uk/.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Sim, Andrew Gregory Chemical Sciences &amp Engineering Faculty of Engineering UNSW. "Reduction-oxidation cycling of metal oxides for hydrogen production". Awarded By:University of New South Wales. Chemical Sciences & Engineering, 2010. http://handle.unsw.edu.au/1959.4/44763.

Texto completo da fonte
Resumo:
A process for the production of clean hydrogen from methane based upon the sequential reduction and oxidation of metal oxides has been studied. The original process, based on iron oxide, suffers from significant disadvantages including deactivation by sintering and coke deposition. Improvement of the iron based system and identification and development of alternative metal oxides for hydrogen production has formed the basis of this study. The literature review outlines current methods for hydrogen production, followed by a review of the Steam-Iron Process as an improved and simpler method for clean hydrogen production. Thermodynamic assessment shows Fe3O4/FeO/Fe, WO3/WO2/W and SnO2/SnO/Sn to be the most prospective systems for the Steam-Metal Process. Experimental testing showed that Fe and W based systems were suitable for hydrogen production, but Sn based systems were unsuitable due to poor reducibility using methane. Attention was then focused on the addition of CeO2/ZrO2 promoters to Fe and W based systems in order to improve reactivity and prevent catalyst deactivation. CeO2/ZrO2 promoted Fe2O3 showed improved redox reactivity and increased stability, with formation of FeO. This aided in mitigation of sintering and introduced the possibility of prevention of coking, as catalysed by methane decomposition over fully reduced Fe metal. Although WO3 was found to be a suitable oxide, complete reduction to tungsten metal resulted in the formation of tungsten carbide and contamination of hydrogen produced. The formation of 31mol% [CeO2/ZrO2] / 69 mol% WO3 showed stabilised reduction using methane, allowing for redox cycling of the WO3-WO2 couple and preventing complete reduction to W metal. The use of the doped metal oxide showed the best performance of all the metal oxides tested, with clean hydrogen production over multiple redox cycles and high metal oxide stability. Further kinetic studies of both the reduction and oxidation reactions show reduction is chemical reaction controlled process (WO3/WO2.9 → WO2) with an apparent activation energy of 142 ?? 3 kJ/mol. Oxidation is also fitted to a chemically controlled process, with a reaction rate expression derived as: rH2 = [0.064 + (F x 0.00038)].e^(-108750/8.314xT).[PH2O]^(0.75) The apparent activation energy for oxidation was calculated as 109 ?? 1 kJ/mol.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Aldea, Ioana Raluca. "Oxidation and reduction processes, investigation of new catalytic systems". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0018/NQ48082.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Shan, Jingning. "Polymer-supported catalysts for oxygen reduction and methanol oxidation". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0017/MQ55541.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yu, Kyunghee. "Test of copper red glazes in reduction and oxidation". Virtual Press, 1987. http://liblink.bsu.edu/uhtbin/catkey/495302.

Texto completo da fonte
Resumo:
The problem is to test how the copper red color will turn out depending on the recipes of the glazes and the firing methods. Sixteen different copper red glazes are tested for the reduction and the oxidation firing. Through the repeated firings some glazes are recommended for its consistency and color. It is also learned that the unpredictability is the biggest problem in the reduction firing. Unlike the reduction firing, the result from the oxidation firing is quite consistent, but none of the glazes has the successful local reduction in the oxidation firing.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Oxidation reduction"

1

name, No. Hydrolysis, oxidation and reduction. Chichester: Wiley, 2003.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

M, Roberts Stanley, e Poignant Geraldine, eds. Hydrolysis, oxidation and reduction. Chichester, West Sussex, England: Wiley, 2002.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

1927-, Scott Gerald, ed. Atmospheric oxidation and antioxidants. Amsterdam: Elsevier, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Reyes, Adolfo M. Handbook on oxidative stress: New research. Hauppauge, N.Y: Nova Science Publisher's, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Humiston, T. J. Production-scale direct oxide reduction demonstration. Editado por Santi D. J, Long J. L, Rockwell International. Rocky Flats Plant e United States. Dept. of Energy. Albuquerque Operations Office. Golden, Colo: Rockwell International, Aerospace Operations, Rocky Flats Plant, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Prousek, Josef. Reakce iniciované přenosem elektronu. Praha: Academia, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Stucki, J. W. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Stucki, J. W. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Stucki, J. W. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Geoghegan, Susan M. Modulating the redox propertoes of a flavoprotein; cloning, expression and site-directed mutagenesis of flavodoxin from M. elsdenii. Dublin: University College Dublin, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Oxidation reduction"

1

Gooch, Jan W. "Oxidation-Reduction". In Encyclopedic Dictionary of Polymers, 510. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8313.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mehrotra, R. N. "Oxidation and Reduction". In Organic Reaction Mechanisms Series, 69–132. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470975800.ch3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Madsen, Robert. "Oxidation and Reduction". In Glycoscience: Chemistry and Chemical Biology I–III, 195–229. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56874-9_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Banerji, K. K. "Oxidation and Reduction". In Organic Reaction Mechanisms · 2008, 79–128. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470979525.ch3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lewis, Rob, e Wynne Evans. "Oxidation and Reduction". In Chemistry, 100–117. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1007/978-0-230-34492-1_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lewis, Rob, e Wynne Evans. "Oxidation and Reduction". In Chemistry, 95–116. London: Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-14045-9_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dennis, David T. "Oxidation-Reduction Reactions". In The Biochemistry of Energy Utilization in Plants, 9–18. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3121-3_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mehrotra, R. N. "Oxidation and Reduction". In Organic Reaction Mechanisms Series, 117–90. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119972471.ch3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Mehrotra, R. N. "Oxidation and Reduction". In Organic Reaction Mechanisms Series, 97–197. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118560273.ch3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

K., Lawrence, e Yan Li. "Chemical Reduction/Oxidation". In Advanced Physicochemical Treatment Processes, 483–519. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59745-029-4_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Oxidation reduction"

1

Ferreri, Paolo, Giuseppe Cerrelli, Yong Miao, Stefano Pellegrino e Lorenzo Bianchi. "Conventional and Electrically Heated Diesel Oxidation Catalyst Physical Based Modeling". In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-37-0010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Nosova, Maria Anatolyevna, e Anastasia Vyacheslavovna Levshina. "Oxidation-reduction processes in oscillating reaction". In III International Research-to-practice Conference, chair Svetlana Vladislavovna Levshina. TSNS Interaktiv Plus, 2016. http://dx.doi.org/10.21661/r-112420.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lee, Christina M., Kevin A. Davis, Robert Seeley, Adel F. Sarofim, Wilford Burton, Dana W. Overacker, Eric G. Eddings e JoAnn S. Lighty. "Catalytic Reduction and Oxidation of Biomass Combustor Effluent". In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2185.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lu, Tianfeng, e Chung Law. "Approaches to Mechanism Reduction for Hydrocarbon Oxidation: Ethylene". In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1326.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Rittmann, B. E. "Oxidation/reduction of multivalent actinides in the subsurface". In Plutonium futures-The science (Topical conference on Plutonium and actinides). AIP, 2000. http://dx.doi.org/10.1063/1.1292202.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fukano, Izumi, Katsuyuki Sugawara, Kenji Sasaki, Takeshi Honjou e Shigekazu Hatano. "A Diesel Oxidation Catalyst for Exhaust Emissions Reduction". In International Truck & Bus Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932958.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gao Meijuan, Zhang Fan e Tian Jingwen. "Oxidation Reduction Potential network sensor based on Kalman filtering". In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zelenka, Paul, Klaus Ostgathe e Egbert Lox. "Reduction of Diesel Exhaust Emissions by Using Oxidation Catalysts". In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/902111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Powell, Ronald A., Derryck Settles, Larry Lane, Carlos L. Ygartua, Arun R. Srivatsa e Clive Hayzelden. "Characterization of copper oxidation and reduction using spectroscopic ellipsometry". In Microelectronic Manufacturing, editado por Michael L. Miller e Kaihan A. Ashtiani. SPIE, 2000. http://dx.doi.org/10.1117/12.410065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lehtoranta, K., P. Matilainen, T. J. J. Kinnunen, J. Heikkilä, T. Rönkkö, J. Keskinen e T. Murtonen. "Diesel Particle Emission Reduction by a Particle Oxidation Catalyst". In SAE 2009 Powertrains Fuels and Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-01-2705.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Oxidation reduction"

1

Zafiriou, Oliver C. Oxidation-Reduction Photochemistry in Marine Systems. Fort Belvoir, VA: Defense Technical Information Center, março de 1997. http://dx.doi.org/10.21236/ada324011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Phelps, M. R., e W. A. Wilcox. Oxidative reduction of glove box wipers with a downdraft thermal oxidation system. Office of Scientific and Technical Information (OSTI), abril de 1996. http://dx.doi.org/10.2172/239332.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Badrinarayanan e Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), agosto de 2012. http://dx.doi.org/10.55274/r0010772.

Texto completo da fonte
Resumo:
Two-way catalysts or oxidation catalysts are the common after-treatment systems used on lean burn natural gas engines to reduce CO, VOCs and formaldehyde emissions. The study evaluates the performance of oxidation catalysts from commercial vendors for varying catalyst temperature and space velocity. For this study, a part of the exhaust from a Waukesha VGF-18 GL lean burn natural gas engine was flowed through a catalyst slipstream system to assess the performance of the oxidation catalysts. The slipstream is used to reduce the size of the catalysts and to allow precise control of temperature and space velocity. Analyzers used include Rosemount 5-gas emissions bench, Nicolet Fourier Transform Infra-Red spectrometer and HP 5890 Series II Gas Chromatograph. The oxidation catalysts were degreened at 1200oF (650oC) for 24 hours prior to performance testing. The reduction efficencies for the emission species varied among the oxidation catalysts tested from different vendors. Most oxidation catalysts showed over 90% maximum reduction efficiencies on CO, VOCs and formaldehyde. VOC reduction efficiency was limited by poor propane emission reduction efficiency at the catalyst temperatures tested. Saturated hydrocarbons such as propane showed low reduction efficiencies on all oxidation catalysts due to high activation energy. Variation in space velocity showed very little effect on the conversion efficiencies. Most species showed over 90% conversion efficiency during the space velocity sweep. Adding more catalyst volume may not increase the reduction efficiency of emission species. Varying cell density showed very little effect on performance of the oxidation catalysts. The friction factor correlation showed the friction factor for flow through a single channel is inversely proportional to cell density.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Grimes, Travis Shane, Bruce Jay Mincher e Nicholas C. Schmitt. Reduction Rates for Higher Americium Oxidation States in Nitric Acid. Office of Scientific and Technical Information (OSTI), setembro de 2015. http://dx.doi.org/10.2172/1244636.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hurst, J. K. [Fundamental studies in oxidation reduction in relation to water photolysis]. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/7068972.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hurst, J. K. (Fundamental studies in oxidation-reduction in relation to water photolysis). Office of Scientific and Technical Information (OSTI), janeiro de 1991. http://dx.doi.org/10.2172/5327232.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Walker, Robert A. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2010. http://dx.doi.org/10.21236/ada535217.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ambrosini, Andrea, Peter Loutzenhiser, Sheldon Jeter, Ellen Stechel e Hany Al-Ansary. High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage (PROMOTES) /CSP. Office of Scientific and Technical Information (OSTI), janeiro de 2018. http://dx.doi.org/10.2172/1513523.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Prater, W. Reduction of Resistivity in Cu Thin Films by Partial Oxidation: Microstructural Mechanisms. Office of Scientific and Technical Information (OSTI), outubro de 2003. http://dx.doi.org/10.2172/826466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Barker, Amanda, Taylor Sullivan, W. Baxter, Robyn Barbato, Shawn Gallaher, Grace Patton, Joseph Smith e Thomas Douglas. Iron oxidation–reduction processes in warming permafrost soils and surface waters expose a seasonally rusting Arctic watershed. Engineer Research and Development Center (U.S.), junho de 2024. http://dx.doi.org/10.21079/11681/48714.

Texto completo da fonte
Resumo:
Landscape-scale changes from climate change in the Arctic affect the soil thermal regime and impact the depth to permafrost in vulnerable tundra watersheds. When top-down thaw of permafrost occurs, oxygen and porewaters infiltrate deeper in the soil column exposing fresh, previously frozen material and altering redox conditions. A gap remains in understanding how redox stratifications in thawing permafrost impact the geochemistry of watersheds in response to climate change and how investigations into redox may be scaled by coupling extensive geophysical mapping techniques. In this study, we collected soils and soil porewaters from three soil pits and surface water samples from an Arctic watershed on the North Slope of Alaska and analyzed for trace metals iron (Fe) and manganese (Mn) and Fe oxidation state using bulk and microscale techniques. We also used geophysical mapping and soil thermistors to measure active layer depths across the watershed to relate accelerating permafrost thaw to watershed geochemistry. Overall, evidence showed that Fe and Mn could be useful as geochemical indicators of permafrost thaw and release of Fe(II) from thawing permafrost and further oxidation to Fe(III) could translate to a higher degree of seasonal rusting coinciding with the warming and thawing of near surface-permafrost.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia